Operations with Functions

Warm Up

Lesson Presentation

Lesson Quiz

Operations with Functions

Warm Up Simplify. Assume that all expressions are defined.

1. $(2 x+5)-\left(x^{2}+3 x-2\right) \quad-x^{2}-x+7$
2. $(x-3)(x+1)^{2}$

$$
x^{3}-x^{2}-5 x-3
$$

3. $\frac{x^{2}-x-6}{x^{2}-4}$

$$
\frac{x-3}{x-2}
$$

Objectives

Add, subtract, multiply, and divide functions.

Write and evaluate composite functions.

Operations with Functions

Vocabulary

composition of functions

You can perform operations on functions in much the same way that you perform operations on numbers or expressions. You can add, subtract, multiply, or divide functions by operating on their rules.

Operations with Functions

Notation for Function Operations

Operation	Notation
Addition	$(f+g)(x)=f(x)+g(x)$
Subtraction	$(f-g)(x)=f(x)-g(x)$
Multiplication	$(f g)(x)=f(x) \cdot g(x)$
Division	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, where $g(x) \neq 0$

Check It Out! Example 1a

Given $f(x)=5 x-6$ and $g(x)=x^{2}-5 x+6$, find each function.
$(f+g)(x)$

$$
\begin{array}{ll}
(f+g)(x)=f(x)+g(x) & \\
=(5 x-6)+\left(x^{2}-5 x+6\right) & \text { Substitute function rules. } \\
=x^{2} & \text { Combine like terms. }
\end{array}
$$

Operations with Functions

Check It Out! Example 1b

Given $f(x)=5 x-6$ and $g(x)=x^{2}-5 x+6$, find each function.
$(f-g)(x)$

$$
\begin{array}{ll}
(f-g)(x)=f(x)-g(x) & \\
=(5 x-6)-\left(x^{2}-5 x+6\right) & \text { Substitute function rules. } \\
=5 x-6-x^{2}+5 x-6 & \text { Distributive Property } \\
=-x^{2}+10 x-12 & \text { Combine like terms. }
\end{array}
$$

When you divide functions, be sure to note any domain restrictions that may arise.

Check It Out! Example 2a

Given $f(x)=x+2$ and $g(x)=x^{2}-4$, find each function.
(fg)(x)
$(f g)(x)=f(x) \cdot g(x)$

$$
\begin{aligned}
& =(x+2)\left(x^{2}-4\right) \quad \text { Substitute function rules. } \\
& =x^{3}+2 x^{2}-4 x-8 \quad \text { Multiply. }
\end{aligned}
$$

Operations with Functions

Check It Out! Example 2b

$$
\begin{array}{rlrl}
\left(\frac{\boldsymbol{g}}{\boldsymbol{f}}\right)(\mathbf{x}) & & \\
\left(\frac{g}{f}\right)(x) & =\frac{g(x)}{f(x)} & & \\
& =\frac{x^{2}-4}{x+2} & & \text { set up th } \\
& \text { rational } \\
& =\frac{(x-2)(x+2)}{x+2} & & \text { Factor c } \\
& =\frac{(x-2)(x+2)}{(x+2)} & & \text { Note tha } \\
& =x-2, \text { whivide ol } \\
& =x \neq-2 & & \text { Sactors. }
\end{array}
$$

Operations with Functions

Another function operation uses the output from one function as the input for a second function. This operation is called the composition of functions.

Composition of Functions

The composition of functions f and g is notated

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $(f \circ g)(x)$ is all values of x in the domain of g such that $g(x)$ is in the domain of f.

Operations with Functions

To find $(f \circ g)(1)$, first find $g(1)$.

$$
g(1)=4
$$

Then use 4 as the input into f :

$$
\begin{gathered}
f(4)=8 \\
\text { So }(f \circ g)(1)=f(g(1))=8 .
\end{gathered}
$$

The order of function operations is the same as the order of operations for numbers and expressions. To find $f(g(3))$, evaluate $g(3)$ first and then substitute the result into f.

Operations with Functions

Reading Math
The composition $(f \circ g)(x)$ or $f(g(x))$ is read " f of g of x."

Caution!

Be careful not to confuse the notation for multiplication of functions with composition $f g(x) \neq f(g(x))$

Check It Out! Example 3a

Given $f(x)=2 x-3$ and $g(x)=x^{2}$, find each value.

$f(g(3))$

Step 1 Find $g(3)$

$$
\begin{array}{rlr}
g(3) & =3^{2} & g(x)=x^{2} \\
& =9 &
\end{array}
$$

Step 2 Find $f(9)$
$f(9)=2(9)-3 \quad f(x)=2 x-3$
$=15$
So $f(g(3))=15$.

Check It Out! Example 3b

Given $f(x)=2 x-3$ and $g(x)=x^{2}$, find each value.

$\boldsymbol{g}(f(3))$

Step 1 Find $f(3)$

$$
\begin{aligned}
f(3) & =2(3)-3 \quad f(x)=2 x-3 \\
& =3
\end{aligned}
$$

Step 2 Find $g(3)$

$$
\begin{array}{rlr}
g(3) & =3^{2} & g(x)=x^{2} \\
& =9 &
\end{array}
$$

So $g(f(3))=9$.

You can use algebraic expressions as well as numbers as inputs into functions. To find a rule for $f(g(x))$, substitute the rule for g into f.

Operations with Functions

Check It Out! Example 4a

Given $\boldsymbol{f}(\boldsymbol{x})=3 \boldsymbol{x}-4$ and $\boldsymbol{g}(\boldsymbol{x})=\sqrt{x}+2$, write each composite. State the domain of each. $f(g(x))$

$$
\begin{aligned}
f(g(x)) & =3(\sqrt{x}+2)-4 & & \text { Substitute the rule } g \text { into } f . \\
& =3 \sqrt{x}+6-4 & & \text { Distribute. Note that } x \geq 0 . \\
& =3 \sqrt{x}+2 & & \text { Simplify. }
\end{aligned}
$$

The domain of $f(g(x))$ is $x \geq 0$ or $\{x \mid x \geq 0\}$.

Check It Out! Example 4b

Given $\boldsymbol{f}(\boldsymbol{x})=3 \boldsymbol{x}-4$ and $\boldsymbol{g}(\boldsymbol{x})=\sqrt{x}+2$, write each composite. State the domain of each. $\boldsymbol{g}(f(x))$
$g(f(x))=$
Substitute the rule f into g.

$$
=\quad \text { Note that } x \geq \frac{4}{3} \text {. }
$$

The domain of $g(f(x))$ is $x \geq \frac{4}{3}$ or $\left\{x \left\lvert\, x \geq \frac{4}{3}\right.\right\}$.

Operations with Functions

Composite functions can be used to simplify a series of functions.

Check It Out! Example 5

During a sale, a music store is selling all drum kits for 20\% off. Preferred customers also receive an additional 15\% off.
a. Write a composite function to represent the final cost of a kit for a preferred customer that originally cost c dollars.

Step 1 Write a function for the final cost of a kit that originally cost c dollars.

$$
\begin{array}{ll}
f(c)=0.80 c & \begin{array}{l}
\text { Drum kits are sold at } \\
80 \% \text { of their cost. }
\end{array}
\end{array}
$$

Operations with Functions

Check It Out! Example 5 Continued

Step 2 Write a function for the final cost if the customer is a preferred customer.

$$
g(c)=0.85 c \quad \text { Preferred customers receive } 15 \% \text { off }
$$

Operations with Functions

Check It Out! Example 5 Continued

Step 3 Find the composition $f(g(c))$.

$$
\begin{aligned}
f(g(c)) & =0.80(g(c)) & & \text { Substitute } g(c) \text { for } c . \\
f(g(c)) & =0.80(0.85 c) & & \text { Replace } g(c) \text { with its rule. } \\
& =0.68 c & &
\end{aligned}
$$

b. Find the cost of a drum kit at $\$ 248$ that a preferred customer wants to buy.
Evaluate the composite function for $c=248$.

$$
f(g(c))=0.68(248)
$$

The drum kit would cost $\$ 168.64$.

