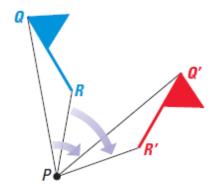

Notes 9.3 Rotations

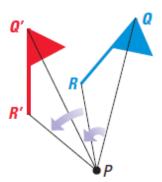
DRAW ROTATIONS A **rotation** is a transformation that turns every point of a preimage through a specified angle and direction about a fixed point. The fixed point is called the **center of rotation**.

In the figure, R is the center of rotation for the preimage ABCD. The measures of angles ARA', BRB', CRC', and DRD' are equal. Any point P on the preimage ABCD has an image P' on A'B'C'D' such that the measure of $\angle PRP'$ is a constant measure. This is called the angle of rotation.

Rotations: $pre-image \rightarrow image$


90° clockwise about the origin: $(x, y) \rightarrow (y, -x)$

90° counterclockwise about the origin: $(x, y) \rightarrow (-y, x)$

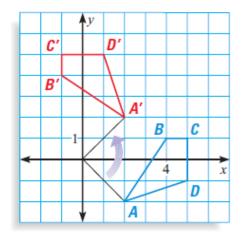

180° about the origin: $(x,y) \rightarrow (-x,-y)$

Notes 9.3 Rotations

Rotations can be clockwise or counterclockwise, as shown below.

Clockwise rotation of 60°

Counterclockwise rotation of 40°


EXAMPLE 2 Rotations in a Coordinate Plane

In a coordinate plane, sketch the quadrilateral whose vertices are A(2, -2), B(4, 1), C(5, 1), and D(5, -1). Then, rotate ABCD 90° counterclockwise about the origin and name the coordinates of the new vertices. Describe any patterns you see in the coordinates.

SOLUTION

Plot the points, as shown in blue. Use a protractor, a compass, and a straightedge to find the rotated vertices. The coordinates of the preimage and image are listed below.

Figure ABCD	Figure A'B'C'D'
A(2, -2)	A'(2, 2)
B(4, 1)	B'(-1,4)
C(5, 1)	C'(-1,5)
D(5,-1)	D'(1,5)

In the list above, the x-coordinate of the image is the opposite of the y-coordinate of the preimage. The y-coordinate of the image is the x-coordinate of the preimage.

This transformation can be described as $(x, y) \rightarrow (-y, x)$.