Finding Equations of Polynomial Functions with Given Zeros

Polynomials are functions of general form $\rightarrow P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$
($n \in$ whole $\#^{\prime} s$)
Polynomials can also be written in factored form $\rightarrow P(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots\left(x-z_{i}\right) \quad(a \in \mathbb{R})$
Given a list of "zeros", it is possible to find a polynomial function that has these specific zeros. In fact, there are multiple polynomials that will work. In order to determine an exact polynomial, the "zeros" and a point on the polynomial must be provided.

Examples: Practice finding polynomial equations in general form with the given zeros.

Find an* equation of a polynomial with the following two zeros: $x=-2, x=4$

Denote the given zeros as z_{1} and z_{2}
Step 1: Start with the factored form of a polynomial.

$$
P(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right)
$$

Step 2: Insert the given zeros and simplify.

$$
\begin{gathered}
P(x)=a(x-(-2))(x-4) \\
P(x)=a(x+2)(x-4)
\end{gathered}
$$

Step 3: Multiply the factored terms together.

$$
P(x)=a\left(x^{2}-2 x-8\right)
$$

Step 4: The answer can be left with the generic " a ", or a value for " a " can be chosen, inserted, and distributed.
i.e. if $a=1$, then $P(x)=x^{2}-2 x-8$
i.e. if $a=-2$, then $P(x)=-2 x^{2}+4 x+16$
*Each different choice for " a " will result in a distinct polynomial. Thus, there are an infinite number of polynomials with the two zeros $x=-2$ and $x=4$.

Find the equation of a polynomial with the following zeroes: $x=0,-\sqrt{2}, \sqrt{2}$ that goes through the point $(-2,1)$.

Denote the given zeros as z_{1}, z_{2} and z_{3}
Step 1: Start with the factored form of a polynomial.

$$
P(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right)
$$

Step 2: Insert the given zeros and simplify.

$$
\begin{gathered}
P(x)=a(x-0)(x-(-\sqrt{2}))(x-\sqrt{2}) \\
P(x)=a x(x+\sqrt{2})(x-\sqrt{2})
\end{gathered}
$$

Step 3: Multiply the factored terms together

$$
P(x)=a\left(x^{3}-2 x\right)
$$

Step 4: Insert the given point $(-2,1)$ to solve for " a ".

$$
\begin{gathered}
1=a\left[(-2)^{3}-2(-2)\right] \\
1=a[-8+4] \\
1=-4 a \\
a=-\frac{1}{4}
\end{gathered}
$$

Step 5: Insert the value for " a " into the polynomial, distribute, and re-write the function.

$$
P(x)=-\frac{1}{4}\left(x^{3}-2 x\right)=-\frac{1}{4} x^{3}+\frac{1}{2} x
$$

Polynomials can have zeros with multiplicities greater than 1. This is easier to see if the Polynomial is written in factored form.

Multiplicity - The number of times a "zero" is repeated in a polynomial. The multiplicity of each zero is inserted as an exponent of the factor associated with the zero. If the multiplicity is not given for a zero, it is assumed to be 1.

Examples: Practice finding polynomial equations with the given zeros and multiplicities.

Find an equation of a polynomial with the given zeroes and associated multiplicities. Leave the answer in factored form.

Zeros	Multiplicity
$x=1$	2
$x=-2$	3
$x=3$	1

Step 1: Write the factored form of the Polynomial.

$$
P(x)=a\left(x-z_{1}\right)^{m}\left(x-z_{2}\right)^{n}\left(x-z_{3}\right)^{p}
$$

Step 2: Insert the given zeros and their corresponding multiplicities.

$$
P(x)=a(x-1)^{2}(x--2)^{3}(x-3)^{1}
$$

Step 3: Simplify any algebra if necessary. The answer can be left with the generic " a ", or a specific value for " a " can be chosen and inserted if requested.

$$
P(x)=a(x-1)^{2}(x+2)^{3}(x-3)
$$

i.e. let $a=1$, then

$$
P(x)=(x-1)^{2}(x+2)^{3}(x-3)
$$

let $a=-2$, then
$P(x)=-2(x-1)^{2}(x+2)^{3}(x-3)$

Find an equation of a polynomial with the given zeros and associated multiplicities. Expand the answer into general form.

		Multiplicity
	Zeros	Zeros can
be real or	$x=0$	3
imagnary	$x=-1$	2
	$x=i$	1
	$x=-i$	1

Step 1: Write the factored form of the Polynomial.

$$
P(x)=a\left(x-z_{1}\right)^{m}\left(x-z_{2}\right)^{n} \ldots\left(x-z_{i}\right)^{p}
$$

Step 2: Insert the given zeros and their corresponding multiplicities.

$$
P(x)=a(x-0)^{3}(x--1)^{2}(x-i)^{1}(x--i)^{1}
$$

Step 3: Simplify any algebra if necessary.

$$
P(x)=a x^{3}(x+1)^{2}(x-i)(x+i)
$$

Step 4: Multiply the factored terms together. Recall that $i^{2}=-1$! Note the generic " a " can be used and distributed, or a specific value for " a " can be chosen and inserted if requested.

$$
P(x)=a x^{7}+2 a x^{6}+2 a x^{5}+2 a x^{4}+a x^{3}
$$

Practice Problems: Try these problems on your own!

Find an equation of a Polynomial with the given zeros.

1. Zeros: $x=-1,-3 \quad$ Answer: $f(x)=a\left(x^{2}+4 x+3\right)$
2. Zeros: $x=-2,2, \sqrt{3},-\sqrt{3}$ Answer: $f(x)=a\left(x^{4}-7 x^{2}+12\right)$
3. Zeros: $x=-4 i, 4 i \quad$ Answer: $f(x)=a\left(x^{2}+16\right)$

Find the equation of a Polynomial given the following zeros and a point on the Polynomial.
4. Zeros: $x=0,-4 \quad$ Point: $(-3,6) \quad$ Answer: $f(x)=-2 x^{2}-8 x$
5. Zeros: $x=-2,5$ Point: $(2,-3) \quad$ Answer: $f(x)=\frac{1}{4} x^{2}-\frac{3}{4} x-\frac{5}{2}$
6. Zeros: $x=-4,-1,1$ Point: $(2,9) \quad$ Answer: $f(x)=\frac{1}{2} x^{3}+2 x^{2}-\frac{1}{2} x-2$

Find an equation of a Polynomial given the following zeros with the listed multiplicities. In each example, set $a=1$.
7. Zero: $x=3$, Multiplicity $2 \quad$ Answer: $f(x)=x^{2}-6 x+9$
8. Zero: $x=0$, Multiplicity $2 \quad$ Answer: $f(x)=x^{3}+2 x^{2}$

Zero: $x=-2$, Multiplicy 1
9. Zero: $x=-1$, Multiplicity 1

Zero: $x=1$, Multiplicy 1
Zero: $x=-i$, Multiplicy 1
Zero: $x=-i$, Multiplicy 1
10. Zero: $x=-3$, Multiplicity 2

Answer: $f(x)=x^{3}+4 x^{2}-3 x-18$
Zero: $x=2$, Multiplicy 1

