Unit 8.5 Use Congruent Triangles NOTES

By definition, congruent triangles have congruent corresponding parts. So, if you can prove that two triangles are congruent, you know that their corresponding parts must be congruent as well.

EXAMPLE 1 Use congruent triangles

Explain how you can use the given information to prove that the hanglider parts are congruent.

GIVEN
$$\triangleright$$
 $\angle 1 \cong \angle 2$, $\angle RTQ \cong \angle RTS$

PROVE
$$ightharpoonup \overline{QT} \cong \overline{ST}$$

Solution

If you can show that $\triangle QRT \cong \triangle SRT$, you will know that $\overline{QT} \cong \overline{ST}$. First, copy the diagram and mark the given information. Then add the information that you can deduce. In this case, $\angle RQT$ and $\angle RST$ are supplementary to congruent angles, so $\angle RQT \cong \angle RST$. Also, $\overline{RT} \cong \overline{RT}$.

Mark given information.

Two angle pairs and a non-included side are congruent, so by the AAS Congruence Theorem, $\triangle QRT \cong \triangle SRT$. Because corresponding parts of congruent triangles are congruent, $\overline{QT} \cong \overline{ST}$.

EXAMPLE 3

Plan a proof involving pairs of triangles

Use the given information to write a plan for proof.

GIVEN
$$\triangleright$$
 $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$

PROVE
$$\triangleright \triangle BCE \cong \triangle DCE$$

Solution

In $\triangle BCE$ and $\triangle DCE$, you know $\angle 1 \cong \angle 2$ and $\overline{CE} \cong \overline{CE}$. If you can show that $\overline{CB} \cong \overline{CD}$, you can use the SAS Congruence Postulate.

To prove that $\overline{CB} \cong \overline{CD}$, you can first prove that $\triangle CBA \cong \triangle CDA$. You are given $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$. $\overline{CA} \cong \overline{CA}$ by the Reflexive Property. You can use the ASA Congruence Postulate to prove that \triangle *CBA* \cong \triangle *CDA*.

▶ Plan for Proof Use the ASA Congruence Postulate to prove that \triangle *CBA* \cong \triangle *CDA*. Then state that $\overline{CB} \cong \overline{CD}$. Use the SAS Congruence Postulate to prove that $\triangle BCE \cong \triangle DCE$.