Unit 8.4 Prove Triangles Congruent by ASA and AAS NOTES

POSTULATE 21 Angle-Side-Angle (ASA) Congruence Postulate

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If Angle
$$\angle A \cong \angle D$$
,
Side $\overline{AC} \cong \overline{DF}$, and
Angle $\angle C \cong \angle F$,
then $\triangle ABC \cong \triangle DEF$.

THEOREM 4.6 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If Angle
$$\angle A \cong \angle D$$
,
Angle $\angle C \cong \angle F$, and
Side $\overline{BC} \cong \overline{EF}$,
then $\triangle ABC \cong \triangle DEF$.

FLOW PROOFS You have written two-column proofs and paragraph proofs. A **flow proof** uses arrows to show the flow of a logical argument. Each reason is written below the statement it justifies.

EXAMPLE 2 Prove the AAS Congruence Theorem

Unit 8.4 Prove Triangles Congruent by ASA and AAS NOTES continued

Triangle Congruence Postulates and Theorems

You have learned five methods for proving that triangles are congruent.

NOTE: Remember that there is no SSA Postulate or Theorem.