Unit 8.4 Finding Zeros of a Polynomial Easy PRACTICE
 State the possible rational zeros for each function. Then factor each and find all zeros. One zero has been given.

1) $f(x)=x^{3}+6 x^{2}+x-34 ; 2$

Possible rational zeros: $\pm 1, \pm 2, \pm 17, \pm 34$ Factors to: $f(x)=\left(x^{2}+8 x+17\right)(x-2)$
Zeros: $\{-4+i,-4-i, 2\}$
2) $f(x)=x^{3}-4 x^{2}-7 x+10 ;-2$

Possible rational zeros: $\pm 1, \pm 2, \pm 5, \pm 10$
Factors to: $f(x)=(x-1)(x-5)(x+2)$
Zeros: $\{1,5,-2\}$
3) $f(x)=x^{4}+4 x^{3}-x^{2}+16 x-20 ;-5$

Possible rational zeros:

$$
\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20
$$

Factors to: $f(x)=(x-1)\left(x^{2}+4\right)(x+5)$
Zeros: $\{1,2 i,-2 i,-5\}$
4) $f(x)=x^{5}-2 x^{4}+10 x^{3}-20 x^{2}+16 x-32 ; 2$

Possible rational zeros:

$$
\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32
$$

Factors to: $f(x)=\left(x^{2}+8\right)\left(x^{2}+2\right)(x-2)$
Zeros: $\{2 i \sqrt{2},-2 i \sqrt{2}, i \sqrt{2},-i \sqrt{2}, 2\}$
5) $f(x)=x^{5}+3 x^{4}+x^{3}+3 x^{2}-2 x-6 ;-3$

Possible rational zeros: $\pm 1, \pm 2, \pm 3, \pm 6$
Factors to: $f(x)=\left(x^{2}+2\right)(x-1)(x+1)(x+3)$ Zeros: $\{i \sqrt{2},-i \sqrt{2}, 1,-1,-3\}$
6) $f(x)=x^{4}+13 x^{3}+39 x^{2}+13 x-42 ;-3$

Possible rational zeros:

$$
\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42
$$

Factors to: $f(x)=(x+2)\left(x^{2}+8 x-7\right)(x+3)$
Zeros: $\{-2,-4+\sqrt{23},-4-\sqrt{23},-3\}$
7) $y=x^{5}-5 x^{4}+12 x^{3}-60 x^{2}+27 x-135 ; 5$

Possible rational zeros:

$$
\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 27, \pm 45, \pm 135
$$

Factors to: $y=\left(x^{2}+3\right)\left(x^{2}+9\right)(x-5)$
Zeros: $\{i \sqrt{3},-i \sqrt{3}, 3 i,-3 i, 5\}$
8) $y=x^{3}+3 x^{2}-4 x-12 ;-2$

Possible rational zeros:

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12
$$

Factors to: $y=(x-2)(x+3)(x+2)$
Zeros: $\{2,-3,-2\}$
9) $y=x^{3}+10 x^{2}+36 x+40 ;-2$

Possible rational zeros:

$$
\pm 1, \pm 2, \pm 4, \pm 5, \pm 8, \pm 10, \pm 20, \pm 40
$$

Factors to: $y=\left(x^{2}+8 x+20\right)(x+2)$
Zeros: $\{-4+2 i,-4-2 i,-2\}$
10) $y=x^{5}+2 x^{4}-5 x^{3}-10 x^{2}-6 x-12 ;-2$

Possible rational zeros:

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12
$$

Factors to: $y=\left(x^{2}+1\right)\left(x^{2}-6\right)(x+2)$
Zeros: $\{i,-i, \sqrt{6},-\sqrt{6},-2\}$
12) $y=x^{3}-4 x^{2}-7 x+10 ; 5$

Possible rational zeros: $\pm 1, \pm 2, \pm 5, \pm 10$
Factors to: $y=(x-1)(x+2)(x-5)$
Zeros: $\{1,-2,5\}$

State the possible rational roots for each equation. Then factor each and find all roots. One root has been given.

13) $x^{3}-6 x^{2}-15 x+100=0 ; 5$

Possible rational roots:
$\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20, \pm 25, \pm 50, \pm 100$
Factors to: $(x+4)(x-5)^{2}=0$
Roots: $\{-4,5$ mult. 2$\}$
14) $x^{4}-24 x^{2}-25=0 ;-5$

Possible rational roots: $\pm 1, \pm 5, \pm 25$
Factors to: $(x-5)\left(x^{2}+1\right)(x+5)=0$
Roots: $\{5, i,-i,-5\}$
15) $x^{5}-5 x^{4}+7 x^{3}-35 x^{2}-8 x+40=0 ; 5$

Possible rational roots:

$$
\pm 1, \pm 2, \pm 4, \pm 5, \pm 8, \pm 10, \pm 20, \pm 40
$$

Factors to: $\left(x^{2}+8\right)(x-1)(x+1)(x-5)=0$
Roots: $\{2 i \sqrt{2},-2 i \sqrt{2}, 1,-1,5\}$
17) $x^{3}+3 x^{2}-10 x-24=0 ; 3$

Possible rational roots:
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
Factors to: $(x+2)(x+4)(x-3)=0$
Roots: $\{-2,-4,3\}$
16) $x^{3}-7 x^{2}+20 x-24=0 ; 3$

Possible rational roots:

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24
$$

Factors to: $\left(x^{2}-4 x+8\right)(x-3)=0$
Roots: $\{2+2 i, 2-2 i, 3\}$
18) $x^{5}+2 x^{4}+12 x^{3}+24 x^{2}+27 x+54=0 ;-2$

Possible rational roots:

$$
\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18, \pm 27, \pm 54
$$

Factors to: $\left(x^{2}+9\right)\left(x^{2}+3\right)(x+2)=0$
Roots: $\{3 i,-3 i, i \sqrt{3},-i \sqrt{3},-2\}$

