Unit 8.3 Prove Triangles Congruent by SSS NOTES

Postulate 19 Side-Side-Side (SSS) Congruence Postulate

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.
If Side $\overline{A B} \cong \overline{R S}$,
Side $\overline{B C} \cong \overline{S T}$, and
Side $\overline{C A} \cong \overline{T R}$,
then $\quad \triangle A B C \cong \triangle R S T$.

EXAMPLE 1 Use the SSS Congruence Postulate

Write a proof.
GIVEN $>\overline{K L} \cong \overline{N L}, \overline{K M} \cong \overline{N M}$
PROVE $>\triangle K L M \cong \triangle N L M$
Proof It is given that $\overline{K L} \cong \overline{N L}$ and $\overline{K M} \cong \overline{N M}$.

By the Reflexive Property, $\overline{L M} \cong \overline{L M}$. So, by the
SSS Congruence Postulate, $\triangle K L M \cong \triangle N L M$.

Unit 8.3 Prove Triangles Congruent by SAS NOTES

Postulate 20 Side-Angle-Side (SAS) Congruence Postulate

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.
If Side $\overline{R S} \cong \overline{U V}$,
Angle $\angle R \cong \angle U$, and
Side $\overline{R T} \cong \overline{U W}$,
then $\triangle R S T \cong \triangle U V W$.

Example 1 Use the SAS Congruence Postulate

Write a proof.
GIVEN $>\overline{B C} \cong \overline{D A}, \overline{B C} \| \overline{A D}$
PROVE $\triangle \triangle A B C \cong \triangle C D A$

WRITE PROOFS Mäke your proof easier to read by identifying the steps where you show congruent sides (S) and angles (A).

STATEMENTS		
S 1. $\overline{B C} \cong \overline{D A}$ REASONS 2. $\overline{B C} \\| \overline{A D}$ 1. Given A 3. $\angle B C A \cong \angle D A C$ 2. Given S $4 . \overline{A C} \cong \overline{C A}$ 3. Alternate Interior Angles Theorem 5. $\triangle A B C \cong \triangle C D A$ 4. Reflexive Property of Congruence 5. SAS Congruence Postulate		

Unit 8.3 Prove Triangles Congruent by HL NOTES

THEOREM 4.5 Hypotenuse-Leg (HL) Congruence Theorem

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

$\triangle A B C \cong \triangle D E F$

EXAMPLE 3 Use the Hypotenuse-Leg Congruence Theorem

Write a proof.
GIVEN $>\overline{W Y} \cong \overline{X Z}, \overline{W Z} \perp \overline{Z Y}, \overline{X Y} \perp \overline{Z Y}$
PROVE $\downarrow \triangle W Y Z \cong \triangle X Z Y$

Solution

Redraw the triangles so they are side by side with corresponding parts in the same position. Mark the given information in the diagram.

STATEMENTS	REASONS
H 1. $\overline{W Y} \cong \overline{X Z}$	1. Given
2. $\overline{W Z} \perp \overline{Z Y}, \overline{X Y} \perp \overline{Z Y}$	2. Given
3. $\angle Z$ and $\angle Y$ are right angles.	3. Definition of \perp lines
4. $\triangle W Y Z$ and $\triangle X Z Y$ are right	4. Definition of a right triangle
triangles.	
L 5. $\overline{Z Y} \cong \overline{Y Z}$	5. Reflexive Property of Congruence
6. $\triangle W Y Z \cong \triangle X Z Y$	6. HL Congruence Theorem

