Unit 8.3 Prove Triangles Congruent by SSS NOTES

POSTULATE 19 Side-Side-Side (SSS) Congruence Postulate

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

If Side
$$\overline{AB} \cong \overline{RS}$$
,
Side $\overline{BC} \cong \overline{ST}$, and
Side $\overline{CA} \cong \overline{TR}$,
then $\triangle ABC \cong \triangle RST$.

EXAMPLE 1

Use the SSS Congruence Postulate

Write a proof.

GIVEN
$$\blacktriangleright \overline{KL} \cong \overline{NL}, \overline{KM} \cong \overline{NM}$$

PROVE
$$\blacktriangleright$$
 $\triangle KLM \cong \triangle NLM$

Proof It is given that $\overline{KL} \cong \overline{NL}$ and $\overline{KM} \cong \overline{NM}$. By the Reflexive Property, $\overline{LM} \cong \overline{LM}$. So, by the SSS Congruence Postulate, $\triangle KLM \cong \triangle NLM$.

Unit 8.3 Prove Triangles Congruent by SAS NOTES

POSTULATE 20 Side-Angle-Side (SAS) Congruence Postulate

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

If Side
$$\overline{RS} \cong \overline{UV}$$
,

Angle $\angle R \cong \angle U$, and
Side $\overline{RT} \cong \overline{UW}$,

then $\triangle RST \cong \triangle UVW$.

EXAMPLE 1

Use the SAS Congruence Postulate

Write a proof.

GIVEN
$$\triangleright \overline{BC} \cong \overline{DA}, \overline{BC} \parallel \overline{AD}$$

PROVE
$$\triangleright \triangle ABC \cong \triangle CDA$$

WRITE PROOFS

Make your proof easier to read by identifying the steps where you show congruent sides (S) and angles (A).

STATEMENTS

- S 1. $\overline{BC} \cong \overline{DA}$
 - 2. $\overline{BC} \parallel \overline{AD}$
- A 3. $\angle BCA \cong \angle DAC$
- S 4. $\overline{AC} \cong \overline{CA}$
 - 5. $\triangle ABC \cong \triangle CDA$

REASONS

- 1. Given
- 2. Given
- 3. Alternate Interior Angles Theorem
- 4. Reflexive Property of Congruence
- 5. SAS Congruence Postulate

Unit 8.3 Prove Triangles Congruent by HL NOTES

THEOREM 4.5 Hypotenuse-Leg (HL) Congruence Theorem

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

USE DIAGRAMS

If you have trouble matching vertices to letters when you separate the overlapping triangles, leave the triangles in their original orientations.

Write a proof.

EXAMPLE 3

GIVEN $\blacktriangleright \overline{WY} \cong \overline{XZ}, \overline{WZ} \perp \overline{ZY}, \overline{XY} \perp \overline{ZY}$

PROVE $\triangleright \triangle WYZ \cong \triangle XZY$

Solution

Redraw the triangles so they are side by side with corresponding parts in the same position. Mark the given information in the diagram.

STATEMENTS

- H 1. $\overline{WY} \cong \overline{XZ}$
 - 2. $\overline{WZ} \perp \overline{ZY}, \overline{XY} \perp \overline{ZY}$
 - 3. $\angle Z$ and $\angle Y$ are right angles.
 - **4.** $\triangle WYZ$ and $\triangle XZY$ are right triangles.
- L 5. $\overline{ZY} \cong \overline{YZ}$
 - **6.** $\triangle WYZ \cong \triangle XZY$

REASONS

Use the Hypotenuse-Leg Congruence Theorem

- 1. Given
- 2. Given
- 3. Definition of \perp lines
- 4. Definition of a right triangle
- 5. Reflexive Property of Congruence
- 6. HL Congruence Theorem