Unit 8.2 Apply Congruence and Triangles NOTES

Two geometric figures are congruent if they have exactly the same size and shape. Imagine cutting out one of the congruent figures. You could then position the cut-out figure so that it fits perfectly onto the other figure.

Congruent

Same size and shape

Not congruent

Different sizes or shapes

In two congruent figures, all the parts of one figure are congruent to the corresponding parts of the other figure. In congruent polygons, this means that the corresponding sides and the corresponding angles are congruent.
congruence statements When you
write a congruence statement for two polygons, always list the corresponding vertices in the same order. You can write congruence statements in more than one way. Two possible congruence statements for the triangles at the right are $\triangle A B C \cong \triangle F E D$ or $\triangle B C A \cong \triangle E D F$.

Corresponding angles	$\angle A \cong \angle F$	$\angle B \cong \angle E$	$\angle C \cong \angle D$
Corresponding sides	$\overline{A B} \cong \overline{F E}$	$\overline{B C} \cong \overline{E D}$	$\overline{A C} \cong \overline{F D}$

EXAMPLE 1 Identify congruent parts

EXAMPLE 2 Use properties of congruent figures

In the diagram, $D E F G \cong S P Q R$.
a. Find the value of x.
b. Find the value of y.

Solution

a. You know that $\overline{F G} \cong \overline{Q R}$.

$$
\begin{aligned}
F G & =Q R \\
12 & =2 x-4 \\
16 & =2 x \\
8 & =x
\end{aligned}
$$

b. You know that $\angle F \cong \angle Q$.

$$
\begin{aligned}
m \angle F & =m \angle Q \\
68^{\circ} & =(6 y+x)^{\circ} \\
68 & =6 y+8 \\
10 & =y
\end{aligned}
$$

Theorem 4.3 Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

If $\angle \boldsymbol{A} \cong \angle D$, and $\angle B \cong \angle E$, then $\angle C \cong \angle F$.

Unit 8.2 Apply Congruence and Triangles NOTES continued

EXAMPLE 4 Use the Third Angles Theorem

Find $m \angle B D C$.

Solution

$\angle A \cong \angle B$ and $\angle A D C \cong \angle B C D$, so by the
Third Angles Theorem, $\angle A C D \cong \angle B D C$.

Write a proof.
GIVEN $>\overline{A D} \cong \overline{C B}, \overline{D C} \cong \overline{B A}, \angle A C D \cong \angle C A B$, $\angle C A D \cong \angle A C B$
PROVE $\triangle A C D \cong \triangle C A B$

Plan a. Use the Reflexive Property to show that $\overline{A C} \cong \overline{A C}$.
Proof $\mathbf{~ b}$. Use the Third Angles Theorem to show that $\angle B \cong \angle D$.

	STATEMENTS	REASONS
$\begin{aligned} & \text { Plan } \\ & \text { in } \\ & \text { Action } \end{aligned}$	1. $\overline{A D} \cong \overline{C B}, \overline{D C} \cong \overline{B A}$	1. Given
	a. 2. $\overline{A C} \cong \overline{A C}$	2. Reflexive Property of Congruence
	3. $\begin{aligned} & \angle A C D \cong \angle C A B, \\ & \angle C A D \cong \angle A C B \end{aligned}$	3. Given
	b. 4. $\angle B \cong \angle D$	4. Third Angles Theorem
	5. $\triangle A C D \cong \triangle C A B$	5. Definition of \cong ©

Theorem 4.4 Properties of Congruent Triangles

Reflexive Property of Congruent Triangles

For any triangle $A B C, \triangle A B C \cong \triangle A B C$.

Symmetric Property of Congruent Triangles

If $\triangle A B C \cong \triangle D E F$, then $\triangle D E F \cong \triangle A B C$.

Transitive Property of Congruent Triangles
If $\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle J K L$, then $\triangle A B C \cong \triangle J K L$.

