Unit 8.1 Apply Triangle Sum Properties NOTES

Classifying Triangles by Sides

Scalene Triangle

No congruent sides

Isosceles Triangle

At least 2 congruent sides

Equilateral Triangle

3 congruent sides

Classifying Triangles by Angles

3 acute angles

Triangle

1 right angle

Obtuse Triangle

1 obtuse angle

Equiangular Triangle

3 congruent angles

ANGLES When the sides of a polygon are extended, other angles are formed. The original angles are the interior angles. The angles that form linear pairs with the interior angles are the exterior angles.

interior angles

THEOREM 4.1 Triangle Sum Theorem

The sum of the measures of the interior angles of a triangle is 180°.

THEOREM 4.2 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

Unit 8.1 Apply Triangle Sum Properties NOTES continued

EXAMPLE 3 Find an angle measure

W ALGEBRA Find $m \angle JKM$.

Solution

STEP 1 Write and solve an equation to find the value of *x*.

$$(2x-5)^{\circ} = 70^{\circ} + x^{\circ}$$

 $(2x-5)^{\circ} = 70^{\circ} + x^{\circ}$ Apply the Exterior Angle Theorem.

$$x = 75$$

Solve for x.

STEP 2 Substitute 75 for x in 2x - 5 to find $m \angle JKM$.

$$2x - 5 = 2 \cdot 75 - 5 = 145$$

▶ The measure of $\angle JKM$ is 145°.

A corollary to a theorem is a statement that can be proved easily using the theorem. The corollary below follows from the Triangle Sum Theorem.

Corollary to the Triangle Sum Theorem

The acute angles of a right triangle are complementary.

