Notes Unit 7

7.1 Tangent Ratio

Tan is short for Tangent
Tangent Ratio TOA
Tan $\angle A=\frac{\text { Opposite } \angle A}{\text { Adjacent } \angle A}$

7.2 Sine and Cosine Ratio

Sin is short for Sine
Sine Ratio SOH
$\operatorname{Sin} \angle A=\frac{\text { Opposite } \angle A}{\text { Hypotenuse }}$
Cos is short for Cosine
Cosine Ratio $\quad \mathrm{CAH}$
$\operatorname{Cos} \angle A=\frac{\text { Adjacent } \angle A}{\text { Hypotenuse }}$

Formulas for Perimeter P, Area A, and Circumference C

Square
side length s

$$
\begin{aligned}
& P=4 s \\
& A=s^{2}
\end{aligned}
$$

Rectangle
length ℓ and width w

$$
P=2 \ell+2 w
$$

$$
A=\ell w
$$

Circle

diameter d
and radius r

$$
\begin{aligned}
& C=\pi d=2 \pi r \\
& A=\pi r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& P=a+b+c \\
& A=\frac{1}{2} b h
\end{aligned}
$$

Triangle

side lengths a, b, and c, base b, and height h

Use the π button on the calculator.
Do not use 3.14 to do calculations!

Triangles:

The base b can be any side of a triangle. The height h is a segment from a vertex that forms a right angle with a line containing the base. The height may be a side of the triangle or in the interior or the exterior of the triangle.

7.4 Angle Measures in Polygons

Polygon interior angle theorem

The sum of all interior angles of a polygon equals $(n-2) \cdot 180^{\circ}$ where n is the number of interior angles

For finding one interior angle of a regular polygon use:
$\frac{(n-2) \cdot 180^{\circ}}{n}$

Polygon exterior angle theorem

The sum of all exterior angles of a polygon equals 360°. This is for all polygons.
(1) Shade one exterior angle at each vertex.
2. Cut out the exterior angles.

Number of sides	Polygon Name
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
11	Hendecagon
12	Dodecagon
13	13 -gon
14	14 -gon
n	n-gon

(3) Arrange the exterior angles to form 360°.

For finding one exterior angle of a polygon use:
$\frac{360^{\circ}}{n}$
$45^{\circ}, 45^{\circ}, 90^{\circ}$ triangle
leg to hypotenuse: times by $\sqrt{2}$
hypotenuse to leg: divide by $\sqrt{2}$
leg to leg:

7.5 Special right triangles

$30^{\circ}, 60^{\circ}, 90^{\circ}$ triangle,
short leg to hypotenuse: hypotenuse to short leg: short leg to long leg: long leg to short leg:
times by 2
divide by 2
times by $\sqrt{3}$
divide by $\sqrt{3}$

7.6 Areas of Regular Polygons

Apothem of a regular polygon

The apothem is drawn from the center of the polygon perpendicular to one side of the polygon.

In the figure to the right, " a " is the apothem,
" G " is the center of the polygon,

"GA" is the radius of the polygon, and $\angle A G B$ is the central angle.

The area of a regular " n "-gon with side lengths " s " is half the product of the apothem " a " and the perimeter " P " So:
$\mathrm{n}=$ number of sides $\mathrm{s}=$ length of one side $\quad \mathrm{a}=$ length of apothem
$\mathrm{P}=$ perimeter of polygon
A = area of polygon
central angle $=$ angle between two consecutive radii

Formula's: $\quad A=\frac{1}{2} a P \quad$ or $\quad A=\frac{1}{2} \cdot a \cdot n \cdot s \quad$ central angle $=\frac{360^{\circ}}{n}$

