
Notes 7.2 Use Parallel Lines and Transversals

POSTULATE 15 Corresponding Angles Postulate

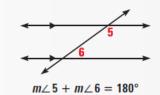
If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

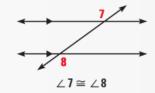
∠1≅∠2

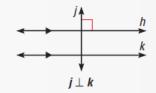
THEOREM 3.4 Alternate Interior Angles

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

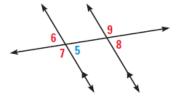

THEOREM 3.6 Alternate Exterior Angles


If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.


THEOREM 3.7 Perpendicular Transversal

If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

$\angle 3 \cong \angle 4$

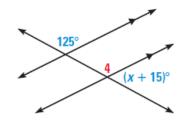

EXAMPLE 2 Using Properties of Parallel Lines

Given that $m \angle 5 = 65^{\circ}$, find each measure. Tell which postulate or theorem you use.

- **a**. $m \angle 6$ **b**. $m \angle 7$
- **c**. *m*∠8 d. m/9

SOLUTION

- **a.** $m/6 = m/5 = 65^{\circ}$
- **b.** $m \angle 7 = 180^{\circ} m \angle 5 = 115^{\circ}$
- **c.** $m \angle 8 = m \angle 5 = 65^{\circ}$
- **d**. $m \angle 9 = m \angle 7 = 115^{\circ}$



Vertical Angles Theorem Linear Pair Postulate Corresponding Angles Postulate Alternate Exterior Angles Theorem

EXAMPLE 4

Using Properties of Parallel Lines

Use properties of parallel lines to find the value of *x*.

SOLUTION

$$m \angle 4 = 125^{\circ}$$

 $m \angle 4 + (x + 15)^{\circ} = 180^{\circ}$
 $125^{\circ} + (x + 15)^{\circ} = 180^{\circ}$

x = 40

Corresponding Angles Postulate Linear Pair Postulate Substitute. Subtract.