Notes 6.4 Angle bisector, angle addition postulate and classifying angles

An **angle** consists of two different rays with the same endpoint. The rays are the **sides** of the angle. The endpoint is the **vertex** of the angle.

The angle with sides \overrightarrow{AB} and \overrightarrow{AC} can be named $\angle BAC$, $\angle CAB$, or $\angle A$. Point A is the vertex of the angle.

The vertex must be the middle letter when naming the angle with three letters.

CLASSIFYING ANGLES Angles can be classified as **acute**, **right**, **obtuse**, and **straight**, as shown below.

POSTULATE 4 Angle Addition Postulate

Words If *P* is in the interior of $\angle RST$, then the measure of $\angle RST$ is equal to the sum of the measures of $\angle RSP$ and $\angle PST$.

Symbols If *P* is in the interior of $\angle RST$, then $m \angle RST = m \angle RSP + m \angle PST$.

CONGRUENT ANGLES Two angles are **congruent angles** if they have the same measure. In the diagram below, you can say that "the measure of angle *A* is equal to the measure of angle *B*," or you can say "angle *A is congruent to* angle *B*."

An angle bisector is a ray that divides an angle into two angles that are congruent.