Notes 6.3 Midpoint and Distance Formula

The **Distance Formula** is a formula for computing the distance between two points in a *coordinate* plane.

THE DISTANCE FORMULA

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between A and B is

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Segments that have the same length are called **congruent segments**.

There is a special symbol, \cong , for indicating *congruence*.

LENGTHS ARE EQUAL.SEGMENTS ARE CONGRUENT.AB = AD $\overline{AB} \cong \overline{AD}$ "is equal to""is congruent to"

Remember: Numbers are equal (=) and figures are congruent (\cong).

MIDPOINTS AND BISECTORS The **midpoint** of a segment is the point that divides the segment into two congruent segments. A **segment bisector** is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector *bisects* a segment.

M is the midpoint of \overline{AB} . So, $\overline{AM} \cong \overline{MB}$ and AM = MB.

The Midpoint Formula

The coordinates of the midpoint of a segment are the averages of the *x*-coordinates and of the *y*-coordinates of the endpoints.

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint M of \overline{AB} has coordinates

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

 \overleftrightarrow{CD} is a segment bisector of \overrightarrow{AB} . So, $\overrightarrow{AM} \cong \overrightarrow{MB}$ and AM = MB.

