Notes 6.3 Midpoint and Distance Formula

The Distance Formula is a formula for computing the distance between two points in a coordinate plane.

THE DISTANCE FORMULA

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the distance between A and B is

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Segments that have the same length are called congruent segments.
There is a special symbol, \cong, for indicating congruence.

LENGTHS ARE EQUAL.

$$
A B=A D
$$

"is equal to"

SEGMENTS ARE CONGRUENT.

$$
\overline{A B} \cong \overline{A D}
$$

"is congruent to"

Remember: Numbers are equal (=) and figures are congruent ($($).
MIDPOINTS AND BISECTORS The midpoint of a segment is the point that divides the segment into two congruent segments. A segment bisector is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector bisects a segment.

M is the midpoint of $\overline{A B}$.
So, $\overline{A M} \cong \overline{M B}$ and $A M=M B$.

$\overleftrightarrow{C D}$ is a segment bisector of $\overline{A B}$.
So, $\overline{A M} \cong \overline{M B}$ and $A M=M B$.

The Midpoint Formula

The coordinates of the midpoint of a segment are the averages of the x-coordinates and of the y-coordinates of the endpoints.

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the midpoint M of $\overline{A B}$ has coordinates

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

