Notes 6.1 Points, Lines, and Planes

- A point has no dimension. It is usually represented by a small dot. Example:
- When naming a point use a capital letter.
- When referring to the point in the example write "point A"
- A line is one dimensional. It is usually represented by a straight line with two arrowheads to indicate that the line extends without end in two directions.

Example:

- When naming a line use script lower case letter or two points on the line.
- When referring to the line in the example write "line ℓ " or $\overleftrightarrow{A B}$ or $\overleftrightarrow{B A}$
- A plane is two dimensional. It is usually represented by a shape that looks like a tabletop or wall. You must imagine that the plane extends without end, even though the drawing of a plane appears to have edges.
- When naming a plane use a script capital letter or three points in the plane.

Example:

- When referring to the line in the example write "plane \mathcal{M} " or "plane $A B C$ "
- Collinear points are points that lie on the same line.
- NonCollinear points are points that do not lie on the same line.
- Coplanar points are points that lie on the same plane.
- NonCoplanar points are points that do not lie on the same plane.
- A line segment or segment is part of a line which consist of two endpoints.

Example:
A B

- When naming a line segment use the two endpoints on the line.

- When referring to the line segment in the example write $\overline{A B}$
- A ray consist of an initial point and extends in one direction only.
- When naming a ray use the endpoint as the first letter and then any point on the ray.

Example:

When referring to the ray in the example write $\overrightarrow{A B}$.

- The wrong ways to refer to the ray in the example are: $\overleftarrow{A B}, \overleftarrow{B A}, \overrightarrow{B A}$
- Opposite rays are two rays going in opposite directions that share an initial point.
- When referring to the opposite rays in the example they are

Example:
 $\overrightarrow{B A}$ and $\overrightarrow{B C}$. Notice that they have the same initial point.

