\qquad

Unit 5.2 Geometric Sequences PRACTICE

Period: \qquad
Determine whether each sequence is geometric. If so, find the common ratio.

1. $3,9,27,81, \ldots$
2. $4,8,16,32, \ldots$
3. $4,8,12,16, \ldots$
4. $4,-8,16,-32, \ldots$
5. $1,0.5,0.25,0.125, \ldots$
6. $100,30,9,2.7, \ldots$
7. $-5,0,5,10, \ldots$
8. $64,-32,16,-8, \ldots$
9. $1,4,9,16, \ldots$

Find the tenth term of each geometric sequence.
10. $2,4,8, \ldots$
11. $1,3,9, \ldots$
12. $-2,6,-18, \ldots$
13. $-3,9,-27, \ldots$
14. $-3,-12,-48, \ldots$
16. $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$
17. $0.3,0.6,1.2, \ldots$
18. $\frac{1}{4}, \frac{1}{2}, 1, \ldots$
19. When a pendulum swings freely, the length of its arc decreases geometrically. Find each missing arc length.
a) $20^{\text {th }}$ arc is $20 \mathrm{in} . ; 22^{\text {nd }}$ arc is 18.5 in .
b) $8^{\text {th }}$ arc is $27 \mathrm{~mm} . ; 10^{\text {th }}$ arc is 3 mm .
c) $5^{\text {th }}$ arc is $25 \mathrm{~cm} . ; 7^{\text {th }}$ arc is 1 cm .
$6^{\text {th }}$ arc is: \qquad
d) $100^{\text {th }}$ arc is 18 ft .; $98^{\text {th }}$ arc is 2 ft .

99 ${ }^{\text {th }}$ arc is: \qquad

Find the missing term of each geometric sequence.
20.
4,,16,
21.

9,22.

2,. . .
23.
$3, \square, 12, \ldots$
24.

2, \square , 50, . .
26.

625,25 . . .
27.
$\frac{1}{3}$,, 3, . . .
28.
25.

4, \square5.76, . . .
0.5 ,, 0.125, . . .

Identify each sequence as arithmetic, geometric, or neither. Then find the next two terms.

29. $9,3,1, \frac{1}{3}, \ldots$
30. $1,0,-2,-5, \ldots$
31. $2,-2,2,-2, \ldots$
32. $-3,2,7,12, .$.
33. $1,-2,-5,-8, \ldots$
34. $1,-2,3,-4, \ldots$

Write an explicit formula for each sequence. Then generate the first five terms.
35. $a_{1}=3, r=-2$
36. $a_{1}=5, r=3$
37. $a_{1}=-1, r=4$
38. $a_{1}=-2, r=-3$
39. $a_{1}=32, r=-0.5$
40. $a_{1}=2187, r=\frac{1}{3}$
41. $a_{1}=9, r=2$
42. $a_{1}=-4, r=4$
43. $a_{1}=0.1, r=-2$
44. The deer population in an area is increasing. This year, the population was 1.025 times last year's population of 2537.
a) Assuming that the population increases at the same rate for the next few years, write an explicit formula for the sequence.
b) Find the deer population for the fourth year of the sequence.

Find the missing terms of each geometric sequence.
45.
12,\square, \square , 0.75, . . .
46.
-9,, \square, \square, -2304, . .

For the geometric sequence $6,18,54,162, \ldots$ find the indicated term.
49. nth term

