\qquad

Unit 4.6 Exponential Growth and Decay PRACTICE

Period: \qquad
Identify the initial amount " a " and the growth factor " b " in each exponential function.

1. $f(x)=3 \cdot 5^{x}$
2. $y=250 \cdot 1.065^{x}$
3. $g(t)=3.5^{t}$
4. $\quad h(x)=5 \cdot 1.02^{x}$

Find the balance in each account after the given period.
5. $\$ 8000$ principal earning 5% compounded annually, after 6 years
6. $\$ 2000$ principal earning 5.4% compounded annually, after 4 years
7. $\$ 500$ principal earning 4% compounded quarterly, after 10 years
8. $\$ 6500$ principal earning 2.8% compounded monthly, after 2 years

Identify the initial amount " a " and the decay factor " b " in each exponential function.
9. $y=8 \cdot 0.8^{x}$
10. $f(x)=12 \cdot 0.1^{x}$

State whether the equation represents exponential growth, exponential decay, or neither.
11. $y=0.82 \cdot 3^{x}$
13. $f(x)=18 \cdot x^{2}$
12. $f(x)=5 \cdot 0.3^{x}$
14. $y=0.9^{x}$
15. The town manager reports that revenue for a given year is $\$ 2.5$ million. The budget director predicts that revenue will increase by 4% per year, bi-annually. If the director's prediction holds true, how much revenue will the town have available 10 years from the date of the town manager's report? Write an expression to represent the equivalent monthly increase in revenue.

Principle $=P=$ \qquad

Annual interest rate as a decimal $=r=$ \qquad

Number of times interested per year $=\mathrm{n}=$ \qquad

Number of years invested $=t=$ \qquad

Expression $=$ \qquad

Revenue to the town available after 10 years = \qquad
16. A wildlife manager determines that there are approximately 200 deer in a certain state park.
a. The population is growing at a rate of 7% per year. How many deer will live in the park after 4 years?

Principle $=P=$ \qquad

Annual interest rate as a decimal $=r=$ \qquad

Number of times interested per year $=\mathrm{n}=$ \qquad

Number of years invested = t = \qquad

Expression = \qquad

Number of deer living in the park after 4 years $=$ \qquad
b. If the carrying capacity of this park is 350 deer, how long will it take for the deer population to reach carrying capacity?

Between \qquad years and \qquad years.
17. A business purchases a computer system for $\$ 3000$. If the value of the system decreases at a rate of 15% per month, how much is the computer worth after 4 years?

Principle $=\mathrm{P}=$ \qquad

Annual interest rate as a decimal $=r=$ \qquad

Number of times interested per year $=\mathrm{n}=$ \qquad

Number of years invested $=\mathrm{t}=$ \qquad

Expression = \qquad

Computer worth after 4 years $=$ \qquad

State whether each graph shows an exponential growth function, an exponential decay function, or neither.
18.

19.

20.

21.

