Unit 4.5 Exponential functions

PRACTICE
Period: \qquad

Determine whether each Function or Equation represents an exponential function or equation. Explain.

1. $f(x)=3^{x}$

Yes, it is in the $y=a b^{x}$ form
3. $y=5 \cdot 2^{x}$

Yes, it is in the $y=a b^{x}$ form
5. $y=3 x-8$
no, the exponent is not a variable
2. $f(a)=5 \cdot 0.9^{a}$

Yes, it is in the $y=a b^{x}$ form
4. $y=6 \cdot x^{3}$
no, the exponent is not a variable
6. $y=4 \cdot 0.3^{x}$

Yes, it is in the $y=a b^{x}$ form

Evaluate each function for the given value.

7. $f(x)=5^{x}$ for when $x=4$
8. $h(t)=3 \cdot 4^{t}$ for when $t=-3$
9. $y=8 \cdot 0.7^{x}$ for when $x=3$
625
$\frac{3}{64}$

$$
\frac{343}{125} \text { or } 2.744
$$

Graph each exponential function.
10. $f(x)=3^{x}$

11. $y=3 \cdot 0.25^{x}$

12. $y=8 \cdot 1.2^{x}$

13. An investment of $\$ 8000$ in a certain Certificate of Deposit (CD) doubles in value every seven years. The function that models the growth of this investment if $f(x)=8000 \cdot 2^{x}$, where x is the number of doubling periods. If the investor does not withdraw any money from this CD, how much money will be available for withdrawal after 28 years?

Find x by $\frac{28}{7}=4$
$8000 \cdot 2^{4}=\$ 128,000$
14. A population of amoebas in a petri dish will triple in size every 20 minutes. At the start of an experiment the population is 800. The function $y=800 \cdot 3^{x}$, where x is the number of 20 minute periods, models the population growth. How many amoebas are in the petri dish after 3 hours?

Find x by $\frac{3 * 60}{20}=9 \quad 800 \cdot 3^{9}=15,746,400$ amoebas
15. A new car cost $\$ 15,000$ to build in 2010. The company's financial analysts expect costs to rise by 6% per year for the 10 years they are planning to build the car. The cost to build the car can be modeled by the function $f(t)=15,000(1.06)^{t}$, where t is the number of years after 2010. How much will it cost the company to build the car in 2017?

Find t by $2017-2010=7$

$$
15,000 \cdot(1.06)^{7}=\$ 22,554.45
$$

Evaluate each function over the domain $\{-2,-1,0,1,2,3\}$.
As the values of the domain increase, do the values of the range increase or decrease?
16. $f(x)=3^{x}$
$f(-2)=\frac{1}{9}$
$f(1)=3$

$f(-1)=\frac{1}{3}$
$f(0)=1$
$f(2)=9$
$f(3)=27$
17. $f(x)=4.2^{x}$
$f(-2)=\frac{25}{441}$
$f(-1)=\frac{5}{21}$
$f(0)=1$
$f(1)=\frac{21}{5} \quad f(2)=\frac{441}{25}$
$f(3)=\frac{9261}{125}$

Range increases or decreases? (Circle one)
18. $f(x)=0.3^{x}$
$f(-2)=\frac{100}{9}$
$f(-1)=\frac{10}{3}$
$f(0)=1$
$f(1)=\frac{3}{10}$
$f(2)=\frac{9}{100}$
$f(3)=\frac{27}{1000}$
Range increases
or

(Circle one)
19. $f(x)=4 \cdot 3^{x}$
$f(-2)=\frac{4}{9}$
$f(-1)=\frac{4}{3}$

$$
f(1)=12
$$

$$
f(2)=36
$$

$$
f(3)=108
$$

or decreases? (Circle one)
20. $f(x)=50 \cdot 0.1^{x}$
$f(-2)=5000$
$f(-1)=500$
$f(1)=5$
$f(2)=\frac{1}{2}$
$f(0)=50$
$f(3)=\frac{1}{20}$

Range increases
or decreases? (Circle one)

Solve each equation.
21. $3^{x}=81$
$x=4$
24. $3 \cdot 2^{x}-16=80$
$x=5$
22. $5 \cdot 2^{x}=40$
$x=3$
25. $\frac{1}{3} \cdot 5^{x}+1=\frac{76}{75}$
$x=-2$
23. $4^{x}+4=68$
$x=3$
26. $1-3\left(7^{x}-2\right)=4$
$x=0$

