Unit 4.5 Exponential functions PRACTICE

Determine whether each Function or Equation represents an exponential function or equation. Explain.

 $f(x) = 3^{x}$ $f(a) = 5 \cdot 0.9^{a}$ 1. 2. Yes, it is in the $y = ab^x$ form Yes, it is in the $y = ab^x$ form $v = 6 \cdot x^3$ $v = 5 \cdot 2^x$ 3. 4. Yes, it is in the $y = ab^x$ form no, the exponent is not a variable $v = 4 \cdot 0.3^{x}$ y = 3x - 86. 5. Yes, it is in the $y = ab^x$ form no, the exponent is not a variable

Evaluate each function for the given value.

7.
$$f(x) = 5^x$$
 for when $x = 4$
 8. $h(t) = 3 \cdot 4^t$ for when $t = -3$
 9. $y = 8 \cdot 0.7^x$ for when $x = 3$

 625
 $\frac{3}{64}$
 $\frac{343}{125}$ or 2.744

Graph each exponential function.

13. An investment of \$8000 in a certain Certificate of Deposit (CD) doubles in value every seven years. The function that models the growth of this investment if $f(x) = 8000 \cdot 2^x$, where x is the number of doubling periods. If the investor does not withdraw any money from this CD, how much money will be available for withdrawal after 28 years?

Find x by
$$\frac{28}{7} = 4$$

 $8000 \cdot 2^4 = $128,000$

14. A population of amoebas in a petri dish will triple in size every 20 minutes. At the start of an experiment the population is 800. The function $y = 800 \cdot 3^x$, where x is the number of 20 minute periods, models the population growth. How many amoebas are in the petri dish after 3 hours?

Find x by
$$\frac{3*60}{20} = 9$$
 800 · 3⁹ = 15,746,400 *amoebas*

15. A new car cost \$15,000 to build in 2010. The company's financial analysts expect costs to rise by 6% per year for the 10 years they are planning to build the car. The cost to build the car can be modeled by the function $f(t) = 15,000(1.06)^t$, where t is the number of years after 2010. How much will it cost the company to build the car in 2017?

```
Find t by 2017 - 2010 = 7 15,000 \cdot (1.06)^7 = $22,554.45
```

Period: ___

Evaluate each function over the domain $\{-2, -1, 0, 1, 2, 3\}$. As the values of the domain increase, do the values of the range increase or decrease?			
16. $f(x) = 3^x$	$f(-2) = \frac{1}{9}$	$f(-1) = \frac{1}{3}$	f(0) = 1
	f(1) = 3	f(2) = 9	f(3) = 27
Range increases	or decreases?	(Circle one)	
17. $f(x) = 4.2^x$	$f(-2) = \frac{25}{441}$	$f(-1) = \frac{5}{21}$	f(0) = 1
	$f(1) = \frac{21}{5}$	$f(2) = \frac{441}{25}$	$f(3) = \frac{9261}{125}$
Range increases	or decreases?	(Circle one)	
18. $f(x) = 0.3^x$	$f(-2) = \frac{100}{9}$	$f(-1)=\frac{10}{3}$	f(0) = 1
	$f(1) = \frac{3}{10}$	$f(2) = \frac{9}{100}$	$f(3) = \frac{27}{1000}$
Range increases	or decreases?	(Circle one)	
19. $f(x) = 4 \cdot 3^x$	$f(-2) = \frac{4}{9}$	$f(-1)=\frac{4}{3}$	f(0) = 4
	f(1) = 12	f(2) = 36	f(3) = 108
Range increases	or decreases?	(Circle one)	
20. $f(x) = 50 \cdot 0.1^x$	f(-2) = 5000	f(-1) = 500	f(0)=50
	f(1) = 5	$f(2) = \frac{1}{2}$	$f(3) = \frac{1}{20}$
Range increases	or decreases?	(Circle one)	
Solve each equation.			
21. $3^x = 81$	22. $5 \cdot 2^x = 40$		23. $4^x + 4 = 68$
x = 4	x = 3		<i>x</i> = 3
24. $3 \cdot 2^x - 16 = 80$	25. $\frac{1}{3} \cdot 5^x + 1 = \frac{76}{75}$		26. $1 - 3(7^x - 2) = 4$
x = 5	x = -2		x = 0