Math 1

19.

Unit 4.1 Zero and negative exponents PRACTICE

Simplify each expression.

1.	13 ⁰	2.	5 ⁻³
3.	$\frac{3}{3^{-4}}$	4.	$\frac{2}{4^{-1}}$
5.	-(7) ⁻²	6.	46 ⁻¹
7.	-6^{0}	8.	$-(12x)^{-2}$
9.	$\frac{1}{8^0}$	10.	6 <i>bc</i> ⁰
11.	$-(11x)^{0}$	12.	$\left(\frac{2}{9}\right)^{-2}$
13.	$3m^{-8}p^0$	14.	$\frac{5a^{-4}}{2c}$
15.	$\frac{-3k^{-3}(mn)^3}{p^{-8}}$	16.	$\left(\frac{2m}{3n}\right)^{-3}$
17.	$8^{-2}q^3r^{-5}$	18.	$-(10a)^{-4}b^{0}$

$\frac{11xy^{-1}z^{0}}{2}$	20.	$5m^{-1}$
v^{-3}		$9(ab)^{-4}c^{7}$

Name: _____

Period: _____

Evaluate each expression for a = -4, b = 3, and c = 2.

21.
$$3a^{-1}$$
22. b^{-3}

23. $4a^2b^{-2}c^3$
24. $9a^0c^4$

25. $-a^{-2}$
26. $(-c)^{-2}$

Write each number as a power of 10 using negative exponents.

27.	$\frac{1}{1000}$		28.	$\frac{1}{10}$
-----	------------------	--	-----	----------------

Write each expression as a decimal.

29.	10 ⁻³	30	. 8	$\cdot 10^{-4}$
-----	------------------	----	-----	-----------------

31. The number of people who vote early doubles every week leading up to an election. This week 1200 people voted early. The expression $1200 \cdot 2^w$ models the number of people who will vote early w weeks after this week. Evaluate the expression for w = -3. Describe what the value of the expression represents in the situation.

32. A pizza shop makes large pizzas with a target diameter of 16 inches. A pizza is acceptable if its diameter is within $3 \cdot 2^{-2}$ in. of the target diameter. Let d represent the diameter of a pizza. Write an inequality for the range of acceptable large pizza diameters in inches.

33. **Open-ended** Choose a fraction to use as a value for the variable c. Find the values of c^{-1} , c^{-3} , and c^{3} .