Math 1

Unit 4.1 Zero and negative exponents PRACTICE

Name:

\qquad

Simplify each expression.

1. 13^{0}
2. 5^{-3}
3. $\frac{3}{3^{-4}}$
4. $\frac{2}{4^{-1}}$
5. $-(7)^{-2}$
6. -6^{0}
7. $\frac{1}{8^{0}}$
8. $-(11 x)^{0}$
9. $3 m^{-8} p^{0}$
10. $\frac{-3 k^{-3}(m n)^{3}}{p^{-8}}$
11. $8^{-2} q^{3} r^{-5}$
12. $\frac{11 x y^{-1} z^{0}}{v^{-3}}$
13. $6 b c^{0}$
14. $\frac{5 a^{-4}}{2 c}$
15. $\left(\frac{2 m}{3 n}\right)^{-3}$
16. $-(10 a)^{-4} b^{0}$

Period: \qquad
6. 46^{-1}
8. $-(12 x)^{-2}$
12. $\left(\frac{2}{9}\right)^{-2}$

$$
-(10 u) \quad D
$$

20. $\frac{5 m^{-1}}{9(a b)^{-4} c^{7}}$

21. $3 a^{-1}$

23. $4 a^{2} b^{-2} c^{3}$
24. $-a^{-2}$

Write each number as a power of 10 using negative exponents.
27. $\frac{1}{1000}$

Write each expression as a decimal.
29. 10^{-3}
30. $8 \cdot 10^{-4}$
31. The number of people who vote early doubles every week leading up to an election. This week 1200 people voted early. The expression $1200 \cdot 2^{w}$ models the number of people who will vote early w weeks after this week. Evaluate the expression for $w=-3$. Describe what the value of the expression represents in the situation.
32. A pizza shop makes large pizzas with a target diameter of 16 inches. A pizza is acceptable if its diameter is within $3 \cdot 2^{-2}$ in. of the target diameter. Let d represent the diameter of a pizza. Write an inequality for the range of acceptable large pizza diameters in inches.
33. Open-ended Choose a fraction to use as a value for the variable c. Find the values of c^{-1}, c^{-3}, and c^{3}.

