Unit 4.1 Zero and negative exponents PRACTICE

\qquad
Simplify each expression.

1. 13^{0}
1
2. $\frac{3}{3^{-4}}$
243
3. $-(7)^{-2} \quad-\frac{1}{49}$
4. $46^{-1} \quad \frac{1}{46}$
5. $-6^{0} \quad-1$
6. $\frac{1}{8^{0}}$
1
7. $-(11 x)^{0}$
-1
8. $\left(\frac{2}{9}\right)^{-2} \quad \frac{81}{4}$
9. $-(12 x)^{-2}-\frac{1}{144 x^{2}}$
10. $6 b c^{0}$
6b
11. $\frac{2}{4^{-1}} \quad 8$
12. $3 m^{-8} p^{0} \quad \frac{3}{m^{8}}$
13. $\frac{5 a^{-4}}{2 c} \quad \frac{5}{2 a^{4} c}$
14. $\frac{-3 k^{-3}(m n)^{3}}{p^{-8}} \quad \frac{-3 p^{8} m^{3} n^{3}}{k^{3}}$
15. $\left(\frac{2 m}{3 n}\right)^{-3} \quad \frac{27 n^{3}}{8 m^{3}}$
16. $8^{-2} q^{3} r^{-5} \quad \frac{q^{3}}{64 r^{5}}$
17. $-(10 a)^{-4} b^{0} \quad \frac{-1}{10,000 a^{4}}$
18. $\frac{11 x y^{-1} z^{0}}{v^{-3}} \quad \frac{11 x v^{3}}{y}$
19. $3 a^{-1} \quad-\frac{3}{4}$
20. $b^{-3} \quad \frac{1}{27}$
21. $4 a^{2} b^{-2} c^{3} \quad \frac{512}{9}$
22. $9 a^{0} c^{4}$
144
23. $-a^{-2} \quad-\frac{1}{16}$
24. $(-c)^{-2} \quad \frac{1}{4}$

Write each number as a power of 10 using negative exponents.
27. $\frac{1}{1000}$
10^{-3}
28. $\frac{1}{10}$
10^{-1}

Write each expression as a decimal.
29. 10^{-3}
0.001
30. $8 \cdot 10^{-4}$
0.0008
31. The number of people who vote early doubles every week leading up to an election. This week 1200 people voted early. The expression $1200 \cdot 2^{w}$ models the number of people who will vote early w weeks after this week. Evaluate the expression for $w=-3$. Describe what the value of the expression represents in the situation.
$1200 \cdot 2^{-3}=150 \quad$ The 150 represents the number of early voters 3 weeks ago.
32. A pizza shop makes large pizzas with a target diameter of 16 inches. A pizza is acceptable if its diameter is within $3 \cdot 2^{-2}$ in. of the target diameter. Let d represent the diameter of a pizza. Write an inequality for the range of acceptable large pizza diameters in inches.
$15.25<d<16.75$
33. Open-ended Choose a fraction to use as a value for the variable c. Find the values of c^{-1}, c^{-3}, and c^{3}.

Answers may vary.

Sample answer if $c=\frac{2}{7}$, then $c^{-1}=\frac{7}{2}, c^{-3}=\frac{343}{8}$, and $c^{3}=\frac{8}{343}$

