## **Unit 4.1-4.2 Notes Using Trigonometric Identities**

# **Reciprocal Identities**

**#1** 
$$\sin \theta = \frac{1}{\csc \theta}$$

**#2** 
$$\cos \theta = \frac{1}{\sec \theta}$$

#3 
$$\tan \theta = \frac{1}{\cot \theta}$$

#4 
$$\csc \theta = \frac{1}{\sin \theta}$$

#5 
$$\sec \theta = \frac{1}{\cos \theta}$$

**#6** 
$$\cot \theta = \frac{1}{\tan \theta}$$

#### **Quotient Identities**

#7 
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

#8 
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

## **Pythagorean Identities**

#9a 
$$sin^2 \theta + cos^2 \theta = 1$$

**#9b** 
$$sin^2 \theta = 1 - cos^2 \theta$$

**#9c** 
$$cos^2\theta = 1 - sin^2\theta$$

**#10a** 
$$1 + tan^2 \theta = sec^2 \theta$$

**#10b** 
$$tan^2 \theta = sec^2 \theta - 1$$

**#10c** 
$$1 = sec^2\theta - tan^2\theta$$

**#11a** 
$$1 + cot^2 \theta = csc^2 \theta$$

**#11b** 
$$cot^2 \theta = csc^2 \theta - 1$$

**#11c** 
$$1 = csc^2\theta - cot^2\theta$$

## **Keep Switch Flip**

**KSF** 
$$\frac{\frac{A}{B}}{\frac{C}{D}}$$
 Rewrite:  $\frac{A}{B} \div \frac{C}{D} = \frac{A}{B} \times \frac{D}{C}$ 

#### Guidelines for verifying a Trigonometric Identity:

- 1. Check whether the statement is false.
  - This is easily done on a graphing calculator. Graph both sides of the identity and check to see if you get the same picture.
- 2. Only manipulate one side of the proposed identity until it becomes the other side of the identity.
  - Typically the more complicated side is the best place to start. That side will give you more to work with.
- 3. **<u>DO NOT</u>** treat the identity like an equation.
  - This assumes that the identity is true, which is the thing that you are trying to prove.

#### Here are four common tricks that are used to verify an identity.

- 1. It is often helpful to rewrite things in terms of sine and cosine.
  - a. Use the ratio identities to do this where appropriate.
- 2. Manipulate the Pythagorean Identities.
  - a. For example, since  $\sin^2 x + \cos^2 x = 1$ , then  $\cos^2 x = 1 \sin^2 x$ , and  $\sin^2 x = 1 \cos^2 x$ .
- 3. Use algebraic manipulations.
  - a. Factor
  - b. Find a common denominator
  - c. Multiply the numerator and denominator by a conjugate
- 4. Use an additional trigonometric formula.
  - a. Sum or difference formula
  - b. Double-angle formula
  - c. Half-angle formula