Unit 3.3 Law of Cosines using SAS \& SSS, \& Heron's Formula PRACTICE

Solve each triangle ABC and the area.

\#1 $\quad \mathrm{A}=61^{\circ}, \mathrm{b}=4, \mathrm{c}=6$
$B=$ \qquad (1 pt)
$\mathrm{C}=$ \qquad (1 pt)

$$
\mathrm{a}=
$$

\qquad (1 pt) Area $=$ \qquad (1 pt)
\#2 $\mathrm{A}=121^{\circ}, \mathrm{b}=5, \mathrm{c}=3$
$B=$ \qquad (1 pt)
$\mathrm{C}=$ \qquad (1 pt)
$\mathrm{a}=\ldots(1 \mathrm{pt}) \quad$ Area $=$ \qquad (1 pt)

$$
\# 3 \quad a=4, b=10, c=8
$$

$\mathrm{A}=$ \qquad (1 pt)
$B=$ \qquad (1 pt)
$\mathrm{C}=$ \qquad $(1 \mathrm{pt}) \quad$ Area $=$ \qquad (1 pt)
\#4

$$
\mathrm{a}=12, \mathrm{~b}=10, \mathrm{c}=10
$$

$\mathrm{A}=$ \qquad (1 pt)
$B=$ \qquad (1 pt)
$\mathrm{C}=$ \qquad (1 pt) Area $=$ \qquad (1 pt)
\#5 $\mathrm{B}=43^{\circ}, \mathrm{a}=91, \mathrm{c}=88$
$\mathrm{A}=$ \qquad (1 pt)
$\mathrm{C}=$ \qquad (1 pt)
$\mathrm{b}=$ \qquad $(1 \mathrm{pt}) \quad$ Area $=$ \qquad (1 pt)
\#6 $\mathrm{C}=121^{\circ}, \mathrm{a}=3, \mathrm{~b}=3$
$\mathrm{A}=$ \qquad (1 pt)
$B=$ \qquad (1 pt)
$\mathrm{c}=$ \qquad $(1 \mathrm{pt}) \quad$ Area $=$ \qquad (1 pt)
\#7

$$
\mathrm{C}=15^{\circ}, \mathrm{a}=6.25, \mathrm{~b}=2.15
$$

$\mathrm{A}=$ \qquad (1 pt)
$B=$ \qquad (1 pt)
$\mathrm{c}=$ \qquad (1 pt)

Area $=$ \qquad (1 pt)
\#8

$$
\mathrm{a}=4.4, \mathrm{~b}=3.8, \mathrm{c}=5.2
$$

$\mathrm{A}=$ \qquad (1 pt)

$$
\mathrm{B}=
$$

\qquad (1 pt)
$\mathrm{C}=$ \qquad $(1 \mathrm{pt}) \quad$ Area $=$ \qquad (1 pt)

Lot Area Problem: Sean works for a real estate company. The company has a contract to sell the triangular lot at the corner of Alamo and Heights Streets (see drawing below). The streets intersect at a 65° angle. The lot extends 200 ft from the intersection along Alamo and 150 ft from the intersection along Heights.

a. Find the area of the lot.
area $=$ \qquad (2 pt)
b. Land in the neighborhood is valued at $\$ 35,000$ per acre. An acre is 43,560 square feet. How much is the lot worth?

Lot worth $=$ \qquad (1 pt)
c. The real estate company will earn a commission of 6% of the sales price. If the lot sells for what it is worth, how much will the commission be?

Commission worth $=$ \qquad (1 pt)
d. A fence company will be putting in a fence along the back of the lot from Heights street to Alamo street. How long will the fence be?

Fence length $=$ \qquad (2 pt)
e. How much will it cost the fence company to build the fence if it cost $\$ 3.75$ per foot?

Cost to build $=$ \qquad (1 pt)
f. If the fence company is to make a 35% profit from building the fence, what should the quote price be to the customer? Quote price $=$ \qquad (1 pt)
\#10 Distance Between a ship and a submarine: From an airplane flying over the ocean, the angle of depression to a submarine lying under the surface is $24^{\circ} 10^{\prime}$. At the same moment, the angle of depression from the airplane to a battleship is $17^{\circ} 30^{\prime}$. (See the figure below.) The distance from the airplane to the battleship is $15,250 \mathrm{ft}$. Find the distance between the battleship and the submarine. (Assume the airplane, submarine, and the battleship are in a vertical plane.)

a. Distance from submarine to battle ship =

