Math 3 Unit 3.2 Notes Law of Sines Ambiguous Cases

Use Law of Sines when you have: ASS

How many possible triangles?
Is the given angle OBTUSE?
\longrightarrow YES, then there are 0 or 1 possible triangle
Is the opposite side \leq adjacent side?
YES, then there are 0 possible triangles

NO, then there is 1 possible triangle To solve triangle, use law of Sines

\longrightarrow NO, then there are 0 or 1 or 2 possible triangles

Not given angle across
Is Sin (NOT given angle and across from given side) > 1 when using Law of Sines?
YES, then there are 0 possible triangles

NO, then there is 1 or 2 possible triangles
Is Sin (NOT given angle and across from given side) $=1$ when using Law of Sines?
YES, then there are 1 possible triangles
To solve triangle, use law of Sines

NO, then there is still 1 or 2 possible triangles
Is the opposite side \geq adjacent side?
YES, then there is 1 possible triangle
To solve triangle, use law of Sines

NO, then there is 2 possible triangles
To solve $1^{\text {st }}$ possible triangle, use law of Sines

To solve $2^{\text {nd }}$ possible triangle, solve for angle across from adjacent side, (in here we will call that angle B_{1})
Take $180-B_{1}=B_{2}$
Using B_{2} as your new angle, use law of Sines, and finish solving the $2^{\text {nd }}$ Triangle.

