\qquad
Unit 3.1 Law of Sines using AAS \& ASA and Area of Triangle PRACTICE

Determine the remaining sides and angles of each triangle ABC.

\#1 $\mathrm{B}=107^{\circ}, \mathrm{C}=11^{\circ}, \mathrm{a}=0.9$
$\mathrm{A}=$ \qquad $(1 \mathrm{pt}), \mathrm{b}=$ \qquad $(1 \mathrm{pt}), \mathrm{c}=$ \qquad (1 pt)
\#2 $\mathrm{A}=29.7^{\circ}, \mathrm{C}=92^{\circ}, \mathrm{b}=16.4$
$B=$ \qquad $(1 \mathrm{pt}), \mathrm{a}=$ \qquad $(1 \mathrm{pt}), \mathrm{c}=$ \qquad (1 pt)
\#3 $\mathrm{A}=80^{\circ}, \mathrm{B}=30^{\circ}, \mathrm{b}=14$
$\mathrm{C}=$ \qquad $(1 \mathrm{pt}), \mathrm{a}=$ \qquad (1 pt), c = \qquad (1 pt)
\#4 $\mathrm{A}=60^{\circ}, \mathrm{B}=40^{\circ}, \mathrm{AB}=12$
$\mathrm{C}=$ \qquad $(1 \mathrm{pt}), \mathrm{AC}=$ \qquad $(1 \mathrm{pt}), \mathrm{BC}=$ \qquad (1 pt)
\#5 $\mathrm{A}=55^{\circ}, \mathrm{C}=40^{\circ}, \mathrm{BC}=19$
$B=$ \qquad $(1 \mathrm{pt}), \mathrm{AB}=$ \qquad $(1 \mathrm{pt}), \mathrm{AC}=$ \qquad (1 pt)

Find the area of each triangle ABC.
\#6 $\mathrm{A}=110^{\circ}, \mathrm{b}=6, \mathrm{c}=7$
\#7
$\mathrm{B}=58.3^{\circ}, \mathrm{a}=9.6, \mathrm{c}=19.3$
\#8
$\mathrm{C}=70^{\circ}, \mathrm{a}=27.6, \mathrm{~b}=14$
\#9 $\mathrm{C}=112.90^{\circ}, \mathrm{A}=31.10^{\circ}, \mathrm{b}=347.6$
\#10
$\mathrm{B}=65^{\circ}, \mathrm{BC}=10.8, \mathrm{AB}=19.7$
$\# 11 \mathrm{~A}=54^{\circ}, \mathrm{AC}=25, \mathrm{AB}=21.3$
\#12 The lunar angles of elevation at Bochum in upper Germany measured as 52.6997° and in Donaueschingen in lower Germany measured as 52.7430°. The two cities are 398 km apart. Calculate the distance to the moon from Bochum. Disregard the curvature of Earth in this calculation.
\qquad (2 pt)

\#13 A real estate agent wants to find the area of a triangular lot. A surveyor takes measurements and finds that two sides are 52.1 m and 21.3 m , and the angle between them is 42.2°. What is the area of the triangular lot?

Answer = \qquad (2 pt)
\#14 A camera with a 6 inch focal length has an angular coverage of 86°. Suppose an aerial photograph is taken vertically with no tilt at an altitude of 3500 ft over ground with an increasing slope of 5°, as shown in the figure. Calculate the ground distance CB that would appear in the resulting photograph.

Answer $=$ \qquad (2 pt)

\#15 The bearing of a lighthouse from a ship was found to be $\mathrm{N} 37^{\circ} \mathrm{E}$. After the ship sailed 2.5 mi due south, the new bearing was $\mathrm{N} 25^{\circ} \mathrm{E}$. Find the distance between the ship and the lighthouse at each location.

$$
\begin{aligned}
& 1^{\text {st }} \text { location }=\ldots(2 \mathrm{pt}) \\
& 2^{\text {nd }} \text { location }=\square \\
& (2 \mathrm{pt})
\end{aligned}
$$

\#16 A painter is going to apply a special coating to a triangular metal plate on a new building. Two sides measure 16.1 m and 15.2 m . She knows that the angle between these sides is 125°. What is the area of the surface she plans to cover with the coating?

Answer = \qquad (2 pt)

Challenge question!

\#17 Triangle ABC has angle $\mathrm{A}=32^{\circ} 50^{\prime}$, and side lengths $\mathrm{c}=604 \mathrm{yds}$, and $\mathrm{b}=582$ yds.
Solve for angles B and C and side length a. Then find the area of the triangle.
$B=$ \qquad $(1 \mathrm{pt}), \mathrm{C}=$ \qquad $(1 \mathrm{pt}), \mathrm{a}=$ \qquad (1 pt)

Area $=$ \qquad

