Math 3 Name: _____ Unit 3.1 Law of Sines using AAS & ASA and Area of Triangle PRACTICE

Determine the remaining sides and angles of each triangle ABC.

#1	B = 107°, C = 11°, a = 0.9	A = _	(1 pt), b =	(1 pt), c =	(1 pt)
#2	A = 29.7°, C = 92°, b = 16.4	B = _	(1 pt), a =	(1 pt), $c = $	(1 pt)
#3	A = 80°, B = 30°, b = 14	C = _	(1 pt), a =	(1 pt), $c = $	(1 pt)
#4	$A = 60^{\circ}, B = 40^{\circ}, AB = 12$	C =	(1 pt), AC =	(1 pt), BC =	(1 pt)
#5	$A = 55^{\circ}, C = 40^{\circ}, BC = 19$	B =	(1 pt), AB =	(1 pt), AC =	(1 pt)
Find the area of each triangle ABC.					
#6	$A = 110^{\circ}, b = 6, c = 7$		Area =	(1 pt)	
#7	B = 58.3°, a = 9.6, c = 19.3		Area =	(1 pt)	
#8	C = 70°, a = 27.6, b = 14		Area =	(1 pt)	
#9	C = 112.90°, A = 31.10°, b = 347	7.6	Area =	(1 pt)	
#10	B = 65°, BC =10.8, AB = 19.7		Area =	(1 pt)	
#11	A = 54°, AC =25, AB = 21.3		Area =	(1 pt)	
#12	The lunar angles of elevation at Bochum in upper Germany measured as 52.6997° and in Donaueschingen in lower Germany measured as 52.7430°. The two cities are 398 km apart. Calculate the distance to the moon from Bochum. Disregard the curvature of Earth in this calculation. Not to scale Bochum Donaueschingen				

Answer = _____

(2 pt)

#13 A real estate agent wants to find the area of a triangular lot. A surveyor takes measurements and finds that two sides are 52.1 m and 21.3 m, and the angle between them is 42.2° . What is the area of the triangular lot?

Answer = _____ (2 pt)

#14 A camera with a 6 inch focal length has an angular coverage of 86°. Suppose an aerial photograph is taken vertically with no tilt at an altitude of 3500 ft over ground with an increasing slope of 5°, as shown in the figure. Calculate the ground distance CB that would appear in the resulting photograph.

#15 The bearing of a lighthouse from a ship was found to be N 37° E. After the ship sailed 2.5 mi due south, the new bearing was N 25° E. Find the distance between the ship and the lighthouse at each location.

 1^{st} location = _____ (2 \text{ pt})

Answer = _____ (2 pt)

 2^{nd} location = _____ (2 \text{ pt})

#16 A painter is going to apply a special coating to a triangular metal plate on a new building. Two sides measure 16.1 m and 15.2 m. She knows that the angle between these sides is 125°. What is the area of the surface she plans to cover with the coating?

Answer = _____ (2 pt)

Challenge question!

#17 Triangle ABC has angle $A = 32^{\circ}50'$, and side lengths c = 604 yds, and b = 582 yds. Solve for angles B and C and side length a. Then find the area of the triangle.

B = _____ (1 pt), C = _____ (1 pt), a = _____ (1 pt)

Area = _____ (2 pt)