Unit 2.4 Linear and Angular Speed PRACTICE
Use the formula $\omega=\frac{\theta}{t}$ to find the value of the missing variable.

1) $\omega=\frac{2 \pi}{3}$ radians per sec, $t=3 \mathrm{sec} \quad$ 2) $\omega=\frac{\pi}{4}$ radians per min, $t=5 \mathrm{~min}$
2π radians
$\frac{5 \pi}{4}$ radians
2) $\theta=\frac{3 \pi}{4}$ radians, $\mathrm{t}=8 \mathrm{sec}$

$$
\frac{3 \pi}{32} \text { radians per sec }
$$

4) $\theta=\frac{2 \pi}{5}$ radians, $t=10 \mathrm{sec}$
$\frac{\pi}{25}$ radians per sec
5) $\theta=\frac{2 \pi}{9}$ radians, $\omega=\frac{5 \pi}{27}$ radians per min

$$
\frac{6}{5} \min
$$

6) $\theta=\frac{3 \pi}{8}$ radians, $\omega=\frac{\pi}{24}$ radians per min

9 min
7) $\theta=3.871142, \mathrm{t}=21.4693 \mathrm{sec}$
0.180311 radians per sec
8) $\omega=0.90674$ radians per $\mathrm{min}, \mathrm{t}=11.876 \mathrm{~min}$
10.768 radians

Use the formula $v=r \omega$ to find the value of the missing variable.
9) $\omega=\frac{2 \pi}{3}$ radians per sec, $r=12 \mathrm{~m}$
8π m per sec
11) $v=9 m$ per sec, $r=5 m$
$\frac{9}{5}$ radians per sec
13) $v=107.692 \mathrm{~m}$ per sec, $r=58.7413 \mathrm{~m}$
1.83333 radians per sec
10) $\omega=\frac{9 \pi}{5}$ radians per $\min , r=8 \mathrm{~cm}$
$\frac{72 \pi}{5}$ cm per sec
12) $v=18 \mathrm{ft}$ per sec, $r=3 \mathrm{ft}$

6 radians per sec
14) $\omega=0.372914$ radian per sec, $r=24.93215 \mathrm{~cm}$
9.29755 cm per sec

The formula $\omega=\frac{\theta}{t}$ can be rewritten as $\theta=\omega t$. Using ωt for θ changes $s=r \theta$ to $s=r \omega t$.
Use the formula $s=r \omega t$ to find the value of the missing variable.
15) $\omega=\frac{\pi}{3}$ radians per sec, $r=6 \mathrm{~cm}, \mathrm{t}=9 \mathrm{sec}$

$18 \pi \mathrm{~cm}$

17) $\omega=\frac{\pi}{4}$ radians per sec, $r=2 \mathrm{~cm}, \mathrm{~s}=6 \pi \mathrm{~cm}$

12 sec
19) $t=4 \mathrm{sec}, r=2 \mathrm{~km}, \mathrm{~s}=\frac{3 \pi}{4} \mathrm{~cm}$
$\frac{3 \pi}{32}$ radians per sec
16) $\omega=\frac{2 \pi}{5}$ radians per sec, $r=9 \mathrm{yd}, \mathrm{t}=12 \mathrm{sec}$
$\frac{216 \pi}{5} y d$
18) $\omega=\frac{2 \pi}{5}$ radians per sec, $r=\frac{3}{2} m, s=\frac{12 \pi}{5} m$
20) $\mathrm{t}=12 \mathrm{sec}, \mathrm{r}=\frac{4}{3} \mathrm{~m}, \mathrm{~s}=\frac{8 \pi}{9} \mathrm{~m}$ $\frac{\pi}{18}$ radians per sec

Find ω for each of the following.
21) the hour hand of a clock

$$
\frac{\pi}{6} \text { radians per hour }
$$

22) a line from the center to the edge of a $C D$ revolving 300 times per min
600π radians per min
23) the minute hand of a clock $\frac{\pi}{30}$ radians per min
24) the second hand of a clock
$\frac{\pi}{30}$ radians per sec
25) the tip of the minute hand of a clock, if the hand is 7 cm long
$\frac{7 \pi}{30}$ cm per min
26) the tip of the second hand of a clock, if the hand is 28 mm long $\frac{14 \pi}{15} \mathrm{~mm} \mathrm{per} \mathrm{sec}$
27) a point on the edge of a flywheel of radius 2 m , rotating 42 times per min $168 \pi \mathrm{~m}$ per min
28) a point on the tread of a tire of radius 18 cm , rotating 35 times per minute $1260 \pi \mathrm{~cm}$ per min
29) the tip of an airplane propeller 3 m long, rotating 500 times per minute (Hint: $r=1.5 \mathrm{~m}$)
$1500 \pi \mathrm{~m}$ per min
30) a point on the edge of a gyroscope of radius 83 cm , rotating 680 times per min
$112,880 \pi$ cm per min
31) The tires of a bicycle have a radius 13 in . and are turning at the rate of 200 revolutions per min. How fast is the bicycle traveling in miles per hour? (Hint: $5280 \mathrm{ft}=1$ mile)
32) Mars rotates on its axis at the rate of about 0.2552 radian per hr. 24.62 hr Approximately how many hours are in a Martian day?
33) Earth travels about the sun in an orbit that is almost circular. Assume that the orbit is a circle with radius $93,000,000 \mathrm{mi}$. Its angular and linear speeds are used in designing solar-power facilities.
a) Assume that a year is 365 days, and find the angle formed by Earth's movement in one day with the sun at the vertex.
$\frac{2 \pi}{365}$ radians per 1 day
b) Give the angular speed in radians per hour.
$\frac{\pi}{4380}$ radians per $h r$
c) Find the linear speed of Earth in miles per hour.
$66,700 \mathrm{mph}$
34) A thread is being pulled off a spool at the rate of 59.4 cm per sec. Find the radius of the spool if it makes 152 revolutions per min.

$$
3.73 \mathrm{~cm}
$$

35) A 90 -horsepower outboard motor at full throttle will rotate its propeller at 5000 revolutions per min. Find the angular speed of the propeller in radians per second.

Unit 2.4 Linear and Angular Speed
Use the formula $\omega=\frac{\theta}{t}$ to find the value of the missing variable.

1) $\omega=\frac{2 \pi}{3}$ radians per sec, $t=3 \mathrm{sec}$

Set-up $\frac{2 \pi}{3}=\frac{\theta}{3}$ solve for $\theta \quad 2 \pi$ radians
3) $\theta=\frac{3 \pi}{4}$ radians, $\mathrm{t}=8 \mathrm{sec}$

Set-up $\omega=\frac{\frac{3 \pi}{4}}{8}$ solve for $\omega \frac{3 \pi}{32}$ radian per sec
5) $\theta=\frac{2 \pi}{9}$ radians, $\omega=\frac{5 \pi}{27}$ radians per min

Set-up $\frac{5 \pi}{27}=\frac{\frac{2 \pi}{9}}{t}$ solve for $t \quad \frac{6}{5} \mathrm{~min}$
7) $\theta=3.871142, \mathrm{t}=21.4693 \mathrm{sec}$

Set-up $\boldsymbol{\omega}=\frac{3.871142}{21.4693}$ solve for $\boldsymbol{\omega}$
0.180311 radian per sec
2) $\omega=\frac{\pi}{4}$ radians per $\mathrm{min}, \mathrm{t}=5 \mathrm{~min}$

Set-up $\frac{\pi}{4}=\frac{\theta}{5} \quad$ solve for $\theta \quad \frac{5 \pi}{4}$ radians
4) $\theta=\frac{2 \pi}{5}$ radians, $\mathrm{t}=10 \mathrm{sec}$

Set-up $\omega=\frac{\frac{2 \pi}{5}}{10}$ solve for $\omega \quad \frac{\pi}{25}$ radian per sec
6) $\theta=\frac{3 \pi}{8}$ radians, $\omega=\frac{\pi}{24}$ radians per min

Set-up $\frac{\pi}{24}=\frac{\frac{3 \pi}{8}}{t}$ solve for $t \quad 9 \mathrm{~min}$
8) $\omega=0.90674$ radians per $\mathrm{min}, \mathrm{t}=11.876 \mathrm{~min}$ Set-up $0.90674=\frac{\theta}{11.876} \quad$ solve for θ 10.768 radians

Use the formula $v=r \omega$ to find the value of the missing variable.

9) $\omega=\frac{2 \pi}{3}$ radians per sec, $r=12 \mathrm{~m}$

Set-up $v=12 \cdot \frac{2 \pi}{3}$ solve for $v \quad 8 \pi \mathrm{~m}$ per sec
11) $v=9 \mathrm{~m}$ per sec, $r=5 \mathrm{~m}$

Set-up $9=5 \cdot \boldsymbol{\omega}$ solve for $\boldsymbol{\omega} \frac{9}{5}$ radians per sec
13) $v=107.692 \mathrm{~m}$ per sec, $r=58.7413 \mathrm{~m}$

Set-up $107.692=58.7413 \cdot \omega$ solve for $\boldsymbol{\omega}$ 1.83333 radians per sec
10) $\omega=\frac{9 \pi}{5}$ radians per $\min , r=8 \mathrm{~cm}$

Set-up $v=8 \cdot \frac{9 \pi}{5}$ solve for $v \frac{72 \pi}{5} \mathrm{~cm}$ per sec
12) $v=18 \mathrm{ft}$ per sec, $r=3 \mathrm{ft}$

Set-up $18=3 \cdot \boldsymbol{\omega}$ solve for $\boldsymbol{\omega} \mathbf{6}$ radians per sec
14) $\omega=0.372914$ radian per sec, $r=24.93215 \mathrm{~cm}$

Set-up $v=24.93215 \cdot 0.372914$ solve for v 9.29755 cm per sec

The formula $\omega=\frac{\theta}{t}$ can be rewritten as $\theta=\omega t$. Using ωt for θ changes $s=r \theta$ to $s=r \omega t$.
Use the formula $s=r \omega t$ to find the value of the missing variable.
15) $\omega=\frac{\pi}{3}$ radians per sec, $r=6 \mathrm{~cm}, t=9 \mathrm{sec}$ Set-up $s=6 \cdot \frac{\pi}{3} \cdot 9$ solve for $s \quad 18 \pi \mathrm{~cm}$
17) $\omega=\frac{\pi}{4}$ radians per sec, $r=2 \mathrm{~cm}, \mathrm{~s}=6 \pi \mathrm{~cm}$

Set-up $6 \pi=2 \cdot \frac{\pi}{4} \cdot t$ solve for $t \quad 12 \mathrm{sec}$
19) $t=4 \mathrm{sec}, \mathrm{r}=2 \mathrm{~km}, \mathrm{~s}=\frac{3 \pi}{4} \mathrm{~cm}$

Set-up $\frac{3 \pi}{4}=2 \cdot \omega \cdot 4$ solve for $\omega \quad \frac{3 \pi}{32}$ radian per sec
16) $\omega=\frac{2 \pi}{5}$ radians per sec, $r=9 \mathrm{yd}, \mathrm{t}=12 \mathrm{sec}$ Set-up $s=9 \cdot \frac{2 \pi}{5} \cdot 12$ solve for $S \quad \frac{216 \pi}{5} y d$
18) $\omega=\frac{2 \pi}{5}$ radians per sec, $r=\frac{3}{2} m, s=\frac{12 \pi}{5} m$

Set-up $\frac{12 \pi}{5}=\frac{3}{2} \cdot \frac{2 \pi}{5} \cdot t$ solve for $t \quad 4 \mathrm{sec}$
20) $\mathrm{t}=12 \mathrm{sec}, \mathrm{r}=\frac{4}{3} \mathrm{~m}, \mathrm{~s}=\frac{8 \pi}{9} \mathrm{~m}$

Set-up $\frac{8 \pi}{9}=\frac{4}{3} \cdot \boldsymbol{\omega} \cdot 12$ solve for $\boldsymbol{\omega} \frac{\pi}{18}$ radian per sec

Find $\boldsymbol{\omega}$ for each of the following. we can use any angle but 1 full circle might be easiest, so use 2π for θ. use $\omega=\frac{\theta}{t}$
21) the hour hand of a clock $t=12$ hours because it takes 12 hours for the hand to go around once in a full circle.

Set-up $\boldsymbol{\omega}=\frac{2 \pi}{12 \text { hours }}$ solve for $\boldsymbol{\omega} \quad \frac{\pi}{6}$ radian per hour
22) a line from the center to the edge of a CD revolving 300 times per min

You get 300 full circles every 1 minute or in other words.
Set-up $\omega=\frac{300 \cdot 2 \pi}{1 \text { minute }}$ solve for $\omega \quad 600 \pi$ radians per min
23) the minute hand of a clock

Set-up $\boldsymbol{\omega}=\frac{2 \pi}{60 \text { minutes }}$ solve for $\boldsymbol{\omega} \quad \frac{\pi}{30}$ radian per min
24) the second hand of a clock

Set-up $\boldsymbol{\omega}=\frac{2 \pi}{60 \text { seconds }}$ solve for $\boldsymbol{\omega} \quad \frac{\pi}{30}$ radian per sec

Find \mathbf{v} for each of the following. (for \#25-\#30)
use $v=\frac{s}{t^{\prime}} \quad$ or $\quad v=\frac{r \theta}{t}, \quad$ or $\quad v=r \omega$
25) the tip of the minute hand of a clock, if the hand is 7 cm long

Use $v=\frac{r \theta}{t} \quad r=7 \mathrm{~cm} \quad \theta=2 \pi$ for 1 full circle $t=60$ minutes for 1 full circle
Set-up $v=\frac{7 \cdot 2 \pi}{60 \text { minutes }}$ solve for $\boldsymbol{v} \quad \frac{7 \pi}{30}$ cm per min
26) the tip of the second hand of a clock, if the hand is 28 mm long

Use $v=\frac{r \theta}{t} \quad r=28 \mathrm{~mm} \quad \theta=2 \pi$ for 1 full circle $t=60$ seconds for 1 full circle
Set-up $v=\frac{28 \cdot 2 \pi}{60 \text { seconds }}$ solve for $\boldsymbol{v} \quad \frac{14 \pi}{15} \mathrm{~mm}$ per sec
27) a point on the edge of a flywheel of radius 2 m , rotating 42 times per min

Use $v=\frac{r \theta}{t} \quad r=2 m \quad \theta=42 \cdot 2 \pi$ for 42 full circles

$$
t=1 \mathrm{~min} \text { for } 42 \text { full circles }
$$

Set-up $v=\frac{2 \cdot 42 \cdot 2 \pi}{1 \text { minute }}$ solve for $v \quad 168 \pi \mathrm{~m}$ per \min
28) a point on the tread of a tire of radius 18 cm , rotating 35 times per minute

Use $v=\frac{r \theta}{t} \quad r=18 \mathrm{~cm} \quad \theta=35 \cdot 2 \pi$ for 35 full circles
$t=1 \mathrm{~min}$ for 35 full circles
Set-up $v=\frac{18 \cdot 35 \cdot 2 \pi}{1 \text { minute }}$ solve for $v \quad 1260 \pi \mathrm{~cm}$ per \min
29) the tip of an airplane propeller 3 m long, rotating 500 times per minute (Hint: $r=1.5 \mathrm{~m}$)

Use $v=\frac{r \theta}{t} \quad r=1.5 m \quad \theta=500 \cdot 2 \pi$ for 500 full circles

$$
t=1 \text { min for } 500 \text { full circles }
$$

Set-up $v=\frac{1.5 \cdot 500 \cdot 2 \pi}{1 \text { minute }}$ solve for $v \quad 1500 \pi m$ per min
30) a point on the edge of a gyroscope of radius 83 cm , rotating 680 times per min

Use $v=\frac{r \theta}{t} \quad r=83 \mathrm{~cm} \quad \theta=680 \cdot 2 \pi$ for 680 full circles $t=1 \mathrm{~min}$ for 680 full circles

Set-up $v=\frac{83 \cdot 680 \cdot 2 \pi}{1 \text { minute }}$ solve for \boldsymbol{v}
$112,880 \pi \mathrm{~cm}$ per min
31) The tires of a bicycle have a radius 13 in . and are turning at the rate of 200 revolutions per min. How fast is the bicycle traveling in miles per hour? (Hint: $5280 \mathrm{ft}=1$ mile)

$$
\text { Use } v=\frac{r \theta}{t} \quad \begin{aligned}
& r=13 \text { in } \quad \theta=200 \cdot 2 \pi \text { for } 200 \text { full circles } \\
& t=1 \mathrm{~min} \text { for } 200 \text { full circles }
\end{aligned}
$$

Set-up $v=\frac{13 \cdot 200 \cdot 2 \pi}{1 \text { minute }}$ solve for $v \quad v=5200 \pi$ inches per min. or $16,336.2818$ inches per min
Do unit conversions: $\frac{16,336.2818 \text { inctes }}{1 \text { minutes }} \cdot \frac{1}{12 \text { incres }} \cdot \frac{1 \text { mile }}{5280} \cdot \frac{60 \text { minutes }}{1 \text { hour }}=\frac{15.46996383 \text { miles }}{1 \text { hours }}$
32) Mars rotates on its axis at the rate of about 0.2552 radian per hr.

Approximately how many hours are in a Martian day?
use $\omega=\frac{\theta}{t}$
Set-up $0.2552=\frac{2 \pi}{t}$ solve for \boldsymbol{t}
24.62 hr
33) Earth travels about the sun in an orbit that is almost circular. Assume that the orbit is a circle with radius $93,000,000 \mathrm{mi}$. Its angular and linear speeds are used in designing solar-power facilities.
a) Assume that a year is 365 days, and find the angle formed by Earth's movement in one day with the sun at the vertex.

Well, if 2π is 1 full circle for 1 year I can write this as: $\frac{2 \pi}{1 \text { year }}$

I need this in days not years so I will do a conversion: $\quad \frac{2 \pi}{1 y \text { dar }} \cdot \frac{1 \text { yexr }}{365 \text { days }}=\frac{2 \pi}{365 \text { days }} \quad \frac{2 \pi}{365}$ radians per 1 day
b) Give the angular speed in radians per hour.

Do more conversions: $\quad \frac{2 \pi}{365 \text { daxes }} \cdot \frac{1 d \alpha y}{24 \text { hours }}=\frac{\pi}{4380 \text { hours }} \quad \frac{\pi}{4380}$ radian per hr
c) Find the linear speed of Earth in miles per hour.
use $v=r \omega \quad$ we just found ω in radians per hour, it was $\frac{\pi}{4380^{\prime}}$, and r is in the problem, it was $93,000,000 \mathrm{mi}$.
so, $v=93,000,000 \cdot \frac{\pi}{4380}=66,705.04949 \quad 66,700 \mathrm{mph}$
34) A thread is being pulled off a spool at the rate of 59.4 cm per sec. Find the radius of the spool if it makes 152 revolutions per min.

First get things into the same units by changing 59.4 cm per sec to cm per minute
Do a conversion: $\quad \frac{59.4 \mathrm{~cm}}{1 \text { seçad }} \cdot \frac{60 \text { seřnds }}{1 \text { minute }}=3564 \mathrm{~cm}$ per minute

Use $v=\frac{r \theta}{t} \quad v=3564$ cm per minute $\quad \theta=152 \cdot 2 \pi$ for 152 full circles

$$
t=1 \min \text { for } 152 \text { full circles }
$$

Set-up $\mathbf{3 5 6 4}=\frac{r \cdot 152 \cdot 2 \pi}{1}$ solve for \boldsymbol{r}

$$
3.73 \mathrm{~cm}
$$

35) A 90-horsepower outboard motor at full throttle will rotate its propeller at 5000 revolutions per min. Find the angular speed of the propeller in radians per second.
use $\omega=\frac{\theta}{t} \quad$ Set-up $\omega=\frac{5,000 \cdot 2 \pi}{1 \text { minute }}=10,000 \pi$ radians per minute
solve for t then convert to units per second

Do a conversion: $\quad \frac{10,000 \pi \text { radians }}{1 \text { młxute }} \cdot \frac{1 \text { miñxtes }}{60 \text { seconds }}=523.5987756$

