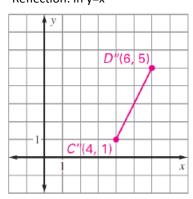
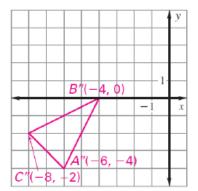

Unit 10.5 worksheet Glide Reflections and Compositions

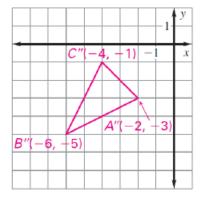

Period: ____

The endpoints of \overline{CD} are C(1, 2) and D(5, 4). Graph the image of \overline{CD} after the glide reflection.

1. Translation: $(x, y) \rightarrow (x - 4, y)$ Reflection: in the x-axis

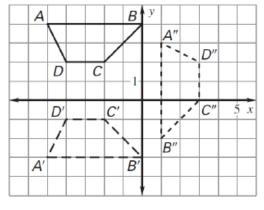


2. Translation: $(x, y) \rightarrow (x, y + 2)$ Reflection: in y=x

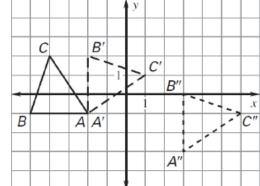


The vertices of $\triangle ABC$ are A(3, 1), B(1, 5), and C(5, 3). Graph the image of $\triangle ABC$ after a composition of the transformations in the order they are listed.

3. Translation: $(x, y) \rightarrow (x + 3, y - 5)$ Reflection: in the y-axis



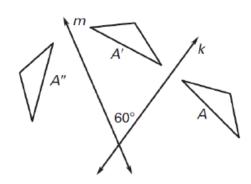
4. Translation: $(x, y) \rightarrow (x - 6, y + 1)$ Rotation: 90° counterclockwise about the origin



Verify that the figures are congruent by describing the composition of transformations.

5.

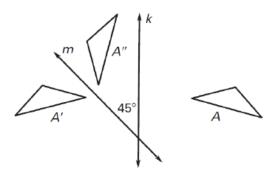
6.



1st transformation: Reflection in $y = \frac{1}{2}$

- 1^{st} transformation: Rotate 90° clockwise about (-2 1)
- 2^{nd} transformation: Rotate 90° about (1, -3) clockwise
- 2^{nd} transformation: Translation: $(x, y) \rightarrow (x + 5, y 2)$

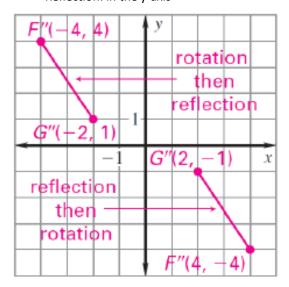
If A is first reflected across line k and then reflected across line m then there is a single rotate about the intersection of lines m and k. Find the angle of rotation that maps A onto A" rotating about the point of intersection of lines m and k.


7.

Rotate A 120° about

the intersection of lines m and k to get A"

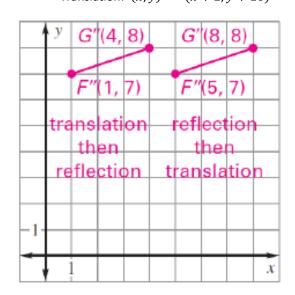
8.


Rotate A 90° about

the intersection of lines m and k to get A"

Graph $\overline{F''G''}$ after a composition of the transformations in the order they are listed. Then perform the transformations in reverse order. Does the order affect the final image $\overline{F''G''}$?

9. F(4,-4), G(1,-2)


Rotation: 90° about the origin Reflection: in the y-axis

ves

10. F(-1,-3), G(-4,-2)Reflection: in the line x = 1Translation: $(x,y) \rightarrow (x+2,y+10)$

yes

In the diagram, $k \parallel m$, \overline{AB} is reflected in line k, and $\overline{A'B'}$ is reflected in line m.

- 11. A translation maps \overline{AB} onto which segment? $\overline{A''B''}$
- 12. Which lines are perpendicular to $\overline{BB''}$? Lines k and m
- 13. Name two segments parallel to $\overline{AA''}$. $\overline{BB'}$ and/or $\overline{BB''}$ and/or $\overline{B'B''}$
- 14. If the distance between k and m is 2.7 centimeters, what is the length of $\overline{AA''}$? 5.4 cm
- 15. Is the distance from A' to m the same as the distance from A" to m? yes

A' B' B' B' B''

Why? Definition of reflection