\qquad
\qquad

Unit 1.7 Solving Multi-Step Inequalities

Solve each inequality. Graph its solution. Write the interval notation.

1) $0<-n+4 n$
$0<-n+4 n \quad$ Write the original problem
$0<3 n \quad$ Combine like terms
$\frac{0}{3}<\frac{3 n}{3} \quad$ Divide both sides by 3
$0<n$
Simplify
$n>0$
Flip inequality around so variable is on left side
GRAPH:

INTERVAL NOTATION:
$(0, \infty)$
(, because <,> signs are parathesis
$0, \infty$, because arrow goes from 0 to ∞ forever to the right
), because ∞ is always)
3) $7 \leq-4 r-3 r$
$7 \leq-4 r-3 r \quad$ Write the original problem
$7 \leq-7 r \quad$ Combine like terms
$\frac{7}{-7} \geq \frac{-7 r}{-7} \quad$ Divide both sides by -7 , flip inequality sign because divide by negative
$-1 \geq r \quad$ Simplify
$r \leq-1 \quad$ Flip inequality around so variable is on left side

GRAPH:

\leq, \geq signs are closed circles
\leq Sign means graph to the left

INTERVAL NOTATION:

$$
(-\infty,-1]
$$

(, cause $-\infty$ is always (
$-\infty,-1$ because arrow goes from -1 to $-\infty$ forever to the left], because \leq, \geq signs are brackets
5) $1>1+2 n+n$
$1>1+2 n+n \quad$ Write the original problem
$1>1+3 n \quad$ Combine like terms
$1-(1)>1-(1)+3 n \quad$ Subtract 1 from both sides
$0>3 n \quad$ Simplify
$\frac{0}{3}>\frac{3 n}{3}$
$0>n \quad$ Simplify
$n<0 \quad$ Flip inequality around so variable is on left side

GRAPH:

INTERVAL NOTATION:
$(-\infty, 0)$
(, because $-\infty$ is always (
$-\infty, 0$ because arrow goes from 0 to $-\infty$ forever to the left), because <,> signs are parathesis
7) - $8 \geq n+3 n$
$-8 \geq n+3 n \quad$ Write the original problem
$-8 \geq 4 n \quad$ Combine like terms
$\frac{-8}{4} \geq \frac{4 n}{4} \quad$ Divide both sides by 4
$-2 \geq n \quad$ Simplify
$n \leq-2 \quad$ Flip inequality around so variable is on left side

GRAPH:

\leq, \geq signs are closed circles \leq Sign means graph to the left

INTERVAL NOTATION:

$(-\infty,-2]$
(, because $-\infty$ is always (
$-\infty,-2$ because arrow goes from -2 to $-\infty$ forever to the left
], because \leq, \geq signs are brackets
9) $2>2+2 a+4 a$
$2>2+2 a+4 a \quad$ Write the original problem
$2>2+6 a \quad$ Combine like terms
$2-(2)>2-(2)+6 a \quad$ Subtract 2 from both sides
$0>6 a \quad$ Simplify
$0>\frac{6 a}{6} \quad$ Divide both sides by 6
$0>a \quad$ Simplify
$a<0 \quad$ Flip inequality around so variable is on left side
GRAPH:

INTERVAL NOTATION:
$(-\infty, 0)$
(, because $-\infty$ is always (
$-\infty, 0$ because arrow goes from 0 to $-\infty$ forever to the left
), because <,> signs are parathesis
11) $4 \leq x+2-x$
$4 \leq x+2-x \quad$ Write the original problem
$4 \leq 2 \quad$ Combine like terms
No variables left means: if statement is FALSE then "No Solution"
If statement is TRUE then "All Real Solutions"
4 is not less than 2, so FALSE
Therefore,
No Solution
GRAPH:
No Solution, so no graph
INTERVAL NOTATION:
No Solution, so no interval solution
13) $-4 x-2(-2 x-1) \geq 2(1-3 x)$
$-4 x-2(-2 x-1) \geq 2(1-3 x) \quad$ Write the original problem
$-4 x-2 \cdot(-2 x)-2 \cdot(-1) \geq 2 \cdot(1)+2 \cdot(-3 x) \quad$ Distribute
$-4 x+4 x+2 \geq 2-6 x$
$2 \geq 2-6 x$
$2-(2) \geq 2-(2)-6 x$
$0 \geq-6 x$
$\frac{0}{-6} \leq \frac{-6 x}{-6}$
$0 \leq x$
$x \geq 0$

GRAPH:

Simplify

Combine like terms

Subtract 2 from both sides

Simplify

Divide both sides by -6 ,
flip inequality sign because divide by negative
Simplify

Flip inequality around so variable is on left side
\leq, \geq signs are closed circles
\geq Sign means graph to the right

INTERVAL NOTATION:

$[0, \infty) \quad$ [, because \leq, \geq signs are brackets
$0, \infty$ because arrow goes from 0 to ∞ forever to the right), because ∞ is always)
15) $-2 a-3 a<2(4-a)-3(a-3)$
$-2 a-3 a<2(4-a)-3(a-3) \quad$ Write the original problem
$-2 a-3 a<2 \cdot(4)+2 \cdot(-a)-3 \cdot(a)-3 \cdot(-3) \quad$ Distribute
$-2 a-3 a<8-2 a-3 a+9 \quad$ Simplify
$-5 a<17-5 a$
$-5 a+(5 a)<17-3 a+(5 a)$
$0<17$
Combine like terms
Add 5a to both sides
Simplify and Combine like terms
No variables left means: if statement is FALSE then "No Solution"
If statement is TRUE then "All Real Solutions"
0 is less than 17, so TRUE
Therefore,
All Real Solutions
GRAPH:

INTERVAL NOTATION:

$(-\infty, \infty)$
$-\infty, \infty$ because arrow goes from $-\infty$ to ∞ forever to the left and right
(, because $-\infty$ is always (, and), because ∞ is always)
$2(1+x)<-2+4(1+2 x) \quad$ Write the original problem
$2 \cdot(1)+2 \cdot(x)<-2+4 \cdot(1)+4 \cdot(2 x) \quad$ Distribute
$2+2 x<-2+4+8 x \quad$ Simplify
$2+2 x<2+8 x \quad$ Combine like terms
$2+2 x-(2 x)<2+8 x-(2 x) \quad$ Subtract $2 x$ from both sides
$2<2+6 x \quad$ Simplify and Combine like terms
$2-(2)<2-(2)+6 x \quad$ Subtract $2 x$ from both sides
$0<6 x \quad$ Simplify
$\frac{0}{6}<\frac{6 x}{6} \quad$ Divide both sides by 6,
$0<x \quad$ Simplify
$x>0$
GRAPH:

<,> signs are open circles
$>$ Sign means graph to the right
INTERVAL NOTATION:

$(0, \infty)$	(, because <,> signs are parathesis
	$\mathbf{0}, \infty$ because arrow goes from 0 to ∞ forever to the right
), because ∞ is always)

19) $-2(x-1) \leq-3 x+2(x+1)$
$-2(x-1) \leq-3 x+2(x+1) \quad$ Write the original problem
$-2 \cdot(x)-2 \cdot(-1) \leq-3 x+2 \cdot(x)+2 \cdot(1) \quad$ Distribute
$-2 x+2 \leq-3 x+2 x+2 \quad$ Simplify
$-2 x+2 \leq-x+2$
$-2 x+(2 x)+2 \leq-x+(2 x)+2$
$2 \leq x+2$
$2-(2) \leq x+2-(2)$
$0 \leq x$
$x \geq 0$
GRAPH:

$$
\begin{aligned}
& \leq, \geq \text { signs are closed circles } \\
& \geq \text { Sign means graph to the right }
\end{aligned}
$$

INTERVAL NOTATION:

$[0, \infty) \quad$ [, because \leq, \geq signs are brackets $0, \infty$ because arrow goes from 0 to ∞ forever to the right), because ∞ is always)
21) $-3-3(1+3 B) \geq 2-4(2+3 B)$
$-3-3(1+3 B) \geq 2-4(2+3 B) \quad$ Write the original problem
$-3-3 \cdot(1)-3 \cdot(3 B) \geq 2-4 \cdot(2)-4 \cdot(3 B) \quad$ Distribute
$-3-3-9 B \geq 2-8-12 B \quad$ Simplify
$-6-9 B \geq-6-12 B$
$-6-9 B+(12 B) \geq-6-12 B+(12 B)$
$-6+3 B \geq-6$
$-6+(6)+3 B \geq-6+(6)$
$3 B \geq 0$
$\frac{3 B}{3} \geq \frac{0}{3}$
$B \geq 0$
Combine like terms
Add 12B to both sides
Simplify and Combine like terms
Add 6 to both sides

Simplify

Divide both sides by 3 ,

Simplify

GRAPH:

\leq, \geq signs are closed circles
\geq Sign means graph to the right
INTERVAL NOTATION:
$[0, \infty)$
[, because \leq, \geq signs are brackets
$0, \infty$ because arrow goes from 0 to ∞ forever to the right), because ∞ is always)
23) $-2(p-2)-4>-p+3(p+4)$
$-2(p-2)-4>-p+3(p+4) \quad$ Write the original problem
$-2 \cdot(p)-2 \cdot(-2)-4>-p+3 \cdot(p)+3 \cdot(4) \quad$ Distribute
$-2 p+4-4>-p+3 p+12 \quad$ Simplify
$-2 p>2 p+12$
Combine like terms
Subtract $2 p$ from both sides
$-4 p>12 \quad$ Simplify and Combine like terms
$\frac{-4 p}{-4}<\frac{12}{-4} \quad$ Divide both sides by -4,
flip inequality sign because divide by negative
$p<-3 \quad$ Simplify

GRAPH:

INTERVAL NOTATION:
$(-\infty,-3)$
(, because $-\infty$ is always (
$-\infty, 0$ because arrow goes from 0 to $-\infty$ forever to the left
), because <,> signs are parathesis

