\qquad Name:

Unit 1.5 Solving Proportions

Solve each proportion.

1) $\frac{3}{5}=\frac{x}{10}$
$\frac{3}{5}=\frac{x}{10}$
$10 \cdot \frac{3}{5}=\frac{x}{10} \cdot 10$ $6=x$
2) $\frac{1}{3}=\frac{x}{5}$
$\frac{1}{3}=\frac{x}{5}$
$5 \cdot \frac{1}{3}=\frac{x}{5} \cdot 5$
$\frac{5}{3}=x$
3) $\frac{7}{5}=\frac{x}{4}$
$\frac{7}{5}=\frac{x}{4}$
$4 \cdot \frac{7}{5}=\frac{x}{4} \cdot 4 \quad$ Multiply both sides by 4 $\frac{28}{5}=x$
4) $\frac{22}{x}=\frac{-5}{3}$
$\frac{22}{x}=\frac{-5}{3} \quad$ Write the original problem $x \cdot \frac{22}{x}=\frac{-5}{3} \cdot x \quad$ Multiply both sides by x $22=\frac{-5}{3} x \quad$ Simplify $\frac{-3}{5} \cdot 22=\frac{-5}{3} x \cdot \frac{-3}{5} \quad$ Multiply both sides by $\frac{-3}{5}$ $\frac{-66}{5}=x$

Write the original problem Simplify
Write the original problem
Multiply both sides by 10
Simplify

Write the original problem

Multiply both sides by 5
Simplify

Simplify
7) $\frac{22}{x}=\frac{-5}{3} \quad$ Alternative way to solve:
$\frac{22}{x}=\frac{-5}{3} \quad$ Write the original problem
$\frac{x}{22}=\frac{-3}{5} \quad$ Proportions can be flipped upside down, keep the negative on top of the fraction
$22 \cdot \frac{x}{22}=\frac{-3}{5} \cdot 22 \quad$ Multiply both sides by 22
$x=\frac{-66}{5} \quad$ Simplify
9) $\frac{25}{p}=\frac{5}{-4}$
$\frac{25}{p}=\frac{5}{-4} \quad$ Write the original problem
$\frac{p}{25}=\frac{-4}{5} \quad$ Proportions can be flipped upside down, keep the negative on top of the fraction
$25 \cdot \frac{p}{25}=\frac{-4}{5} \cdot 25 \quad$ Multiply both sides by 25
$x=-20$
Simplify

Solve each proportion using the Cross Products Property.
11) $\frac{11}{8}=\frac{13}{m}$
$\frac{11}{8}=\frac{13}{m}$
Write the original problem
$m \cdot 11=13 \cdot 8 \quad$ Use cross products property
$\frac{11 m}{11}=\frac{104}{11} \quad$ Divide both sides by 11
$x=\frac{104}{11} \quad$ Simplify
13) $\frac{14}{f}=\frac{9}{21}$
$\frac{14}{f}=\frac{9}{21}$
Write the original problem
$21 \cdot 14=9 \cdot f \quad$ Use cross products property
$\frac{294}{9}=\frac{9 f}{9} \quad$ Divide both sides by 9
$\frac{98}{3}=f \quad$ Simplify
15) $\frac{16}{-5}=\frac{-13}{c}$
$\frac{16}{-5}=\frac{-13}{c}$
Write the original problem
$c \cdot 16=-13 \cdot(-5) \quad$ Use cross products property
$\frac{16 c}{16}=\frac{65}{16} \quad$ Divide both sides by 16
$c=\frac{65}{16} \quad$ Simplify
17) The doors on a building are proportional to the size of the building. The height of each door is 72 in ., and the width is 32 in . If the height of the building is 102 ft , what is the width of the building?

$$
\begin{aligned}
& \frac{\text { HEIGHT }}{\text { WIDTH }}=\frac{72 \text { in }}{32 \text { in }}=\frac{102 \mathrm{ft}}{x \mathrm{ft}} \text { need to change to same units to work out problem. } \\
& \frac{\text { HEIGHT }}{\text { WIDTH }}=\frac{6 \mathrm{ft}}{2 \frac{2}{3} f t}=\frac{102 \mathrm{ft}}{x \mathrm{ft}} \text { divide } 72 \text { by } 12 \text { to get } 6 \mathrm{ft} \text { and divide } 32 \text { by } 12 \text { to get } 2 \frac{2}{3} \mathrm{ft} .
\end{aligned}
$$

$x \cdot 6=102 \cdot 2 \frac{2}{3} \quad$ Use cross products property
$\frac{6 x}{6}=\frac{272}{6} \quad$ Divide both sides by 6
$x=\frac{136}{3} \quad$ Simplify
$\mathrm{X}=45 \frac{1}{3} \mathrm{ft} \quad$ Change to mixed fraction and add units
Or
$\frac{\text { HEIGHT }}{\text { WIDTH }}=\frac{72 \text { in }}{32 \text { in }}=\frac{1224 \text { in }}{x \text { in }}$ multiple 102 by 12 to get 1224 in.
$\mathrm{X}=544 \mathrm{in}$, then divide by 12 to get $\mathrm{X}=45 \frac{1}{3} \mathrm{ft}$
19) Sixty students, out of 100 surveyed, chose chicken nuggets as their favorite lunch item. If the school has 1360 students, how many students would likely say that chicken nuggets is their favorite if the survey is a fair representation of the student body?

$$
\frac{\text { LIKE CHICKEN NUGGETS }}{\text { TOTAL PEOPLE }}=\frac{60 \text { LIKE CHICKEN NUGGETS }}{100 \text { TOTAL SURVEYED }}=\frac{x \text { LIKE CHICKEN NUGGETS }}{1360 \text { TOTAL STUDENTS }}
$$

$\frac{60}{100}=\frac{x}{1360}$	Write the original problem
$1360 \cdot \frac{60}{100}=\frac{x}{1360} \cdot 1360$	Multiply both sides by 1360
$816=x$	Simplify

$\mathrm{X}=816$ students is a fair representation of how many students would like chicken nuggets.

Solve the following. Round to two decimal places.

21) $\frac{10}{k-5}=\frac{5}{k}$
$\frac{10}{k-5}=\frac{5}{k} \quad$ Write the original problem
$k \cdot 10=5 \cdot(k-5) \quad$ Use cross products property
$10 \mathrm{k}=5 \cdot(k)+5(-5) \quad$ Distribute
$10 k=5 k-25 \quad$ Simplify
$10 k-(5 k)=5 k-(5 k)-25 \quad$ Subtract $5 k$ from both sides
$5 k=-25 \quad$ Simplify and Combine like terms
$\frac{5 k}{5}=\frac{-25}{5} \quad$ Divide both sides by 5
$k=-5 \quad$ Simplify
$k=-5.00 \quad$ Round to two decimal places
22) $\frac{x-4}{x}=\frac{9}{8}$
$\frac{x-4}{x}=\frac{9}{8}$
$8 \cdot(x-4)=x \cdot(9)$
$8 \cdot(x)+8 \cdot(-4)=9 x$
$8 x-32=9 x$
$8 x-(8 x)-32=9 x-(8 x)$
$-32=x$
$-32.00=x$

Write the original problem
Use cross products property
Distribute

Simplify
Subtract $8 x$ from both sides
Simplify and Combine like terms
Round to two decimal places
25) $\frac{23}{15}=\frac{p+10}{p-17}$
$\frac{23}{15}=\frac{p+10}{p-17} \quad$ Write the original problem
$(p-17) \cdot 23=(p+10) \cdot 15 \quad$ Use cross products property
$(\mathrm{p}) \cdot 23+(-17) \cdot 23=(\mathrm{p}) \cdot 15+(10) \cdot 15 \quad$ Distribute
$23 p-391=15 p+150 \quad$ Simplify
$23 p-(15 p)-391=15 p-(15 p)+150 \quad$ Subtract $15 p$ from both sides
$8 p-391=150 \quad$ Simplify and Combine like terms
$8 p-391+(391)=150+(391) \quad$ Add 391 to both sides
$8 p=541 \quad$ Simplify
$\frac{8 p}{8}=\frac{541}{8}$
$p=\frac{541}{8}$
$p=67.625$
change to decimal
$p=67.63$
Round to two decimal places

