Unit 1.2 Trigonometric Functions PRACTICE

Find the trigonometry function values of the most commonly used angles. 0°, 90°, 180°, 270°, and 360°

) (9	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0)°						
9	0°						
18	0°						
27	′0°						
36	0°						

Use the trigonometric function values from the above table to evaluate each expression. An expression such as cot^2 90° means (cot 90°)².

2)
$$\cos 90^{\circ} + 3 \sin 270^{\circ}$$

3)
$$\tan 0^{\circ} - 6 \sin 90^{\circ}$$

4)
$$3\sec 180^{\circ} - 5\tan 360^{\circ}$$

5)
$$4\csc 270^{\circ} + 3\cos 180^{\circ}$$

6)
$$\tan 360^{\circ} + 4 \sin 180^{\circ} + 5 \cos^2 180^{\circ}$$

7)
$$2 \sec 0^{\circ} + 4 \cot^2 90^{\circ} + \cos 360^{\circ}$$

8)
$$sin^2 180^\circ + cos^2 180^\circ$$

9)
$$sin^2 360^\circ + cos^2 360^\circ$$

10)
$$sec^2 180^\circ - 3 sin^2 360^\circ + 2 cos 180^\circ$$

11)
$$5 \sin^2 90^\circ + 2 \cos^2 270^\circ - 7 \tan 360^\circ$$

12) **Concept check:** If $\cot \theta$ is undefined, then what is the value of $\tan \theta$?

13) **Concept check:** If the terminal side of an angle θ is in quadrant III, then what is the sign of each of the trigonometric function values of θ ?

Suppose that the point (x, y) is in the indicated quadrant. Decide whether the given ratio is positive or negative.

14) II,
$$\frac{x}{r}$$

15) III,
$$\frac{y}{r}$$

16) IV,
$$\frac{y}{x}$$

17) IV,
$$\frac{x}{y}$$

18) II,
$$\frac{y}{r}$$

19) III,
$$\frac{x}{r}$$

20) IV,
$$\frac{x}{r}$$

21) IV,
$$\frac{y}{r}$$

Find the values of the six trigonometric functions for each angle in standard position having the given point on its terminal side. Rationalize denominators when applicable.

22) (-3,4)

23) (-4, -3)

24) (0, 2)

25) (-4,0)

 $\sin \theta =$

 $\sin \theta =$

 $\sin \theta =$

 $\sin \theta =$

 $\cos \theta =$

 $\cos \theta =$

 $\cos \theta =$

 $\cos \theta =$

 $\tan \theta =$

 $\tan \theta =$

 $\tan \theta =$

 $\tan \theta =$

 $\csc \theta =$

 $\csc \theta =$

 $\csc \theta =$

 $\csc \theta =$

 $\sec \theta =$

 $\sec \theta =$

 $\sec \theta =$

 $\sec \theta =$

 $\cot \theta =$

 $\cot \theta =$

 $\cot \theta =$

 $\cot \theta =$

26) $(1, \sqrt{3})$

27) $(-2\sqrt{3}, -2)$

28) (-2,0)

29) (3, -4)

 $\sin \theta =$

 $\sin \theta =$

 $\sin \theta =$

 $\sin \theta =$

 $\cos \theta =$

 $\cos \theta =$

 $\cos \theta =$

 $\cos \theta =$

 $\tan \theta =$

 $\tan \theta =$

 $\tan \theta =$

 $\tan \theta =$

 $\csc \theta =$

 $\csc \theta =$

 $\csc \theta =$

 $\csc \theta =$

 $\sec \theta =$

 $\sec \theta =$

 $\sec \theta =$

 $\sec \theta =$

 $\cot \theta =$

 $\cot \theta =$

 $\cot \theta =$

 $\cot \theta =$

- The angles 15° and 75° are complementary. With your calculator determine $\sin 15^{\circ}$ and $\cos 75^{\circ}$. Make a conjecture about the sines and cosines of complementary angles, and test your hypothesis with other pairs of complementary angles.
- The angles 25° and 65° are complementary. With your calculator determine tan 25° and cot 65°. Make a conjecture about the tangents and cotangents of complementary angles, and test your hypothesis with other pairs of complementary angles.
- With your calculator determine $\sin 10^{\circ}$ and $\sin(-10^{\circ})$. Make a conjuncture about the sines of an angle and its negative, and test your hypothesis with other angles. Also, use a geometry argument with the definition of $\sin \theta$ to justify your hypothesis.