1)

Unit 1.2 Trigonometric Functions PRACTICE

Find the trigonometry function values of the most commonly used angles. 0°, 90°, 180°, 270°, and 360°

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	csc θ	$\sec \theta$	$\cot \theta$
0 °	0	1	0	undefined	1	undefined
90°	1	0	undefined	1	undefined	0
180°	0	-1	0	undefined	-1	undefined
270°	-1	0	undefined	-1	undefined	0
360°	0	1	0	undefined	1	undefined

Use the trigonometric function values from the above table to evaluate each expression. An expression such as cot^2 90° means $(cot 90^\circ)^2$.

- 2) $\cos 90^{\circ} + 3 \sin 270^{\circ}$
- 3) $\tan 0^{\circ} 6 \sin 90^{\circ}$

-6

- 4) $3 \sec 180^{\circ} 5 \tan 360^{\circ}$
- -3
- 5) $4\csc 270^{\circ} + 3\cos 180^{\circ}$

-7

6) $\tan 360^{\circ} + 4 \sin 180^{\circ} + 5 \cos^2 180^{\circ}$

- 7) $2 \sec 0^{\circ} + 4 \cot^2 90^{\circ} + \cos 360^{\circ}$
- 3

- 8) $sin^2 180^\circ + cos^2 180^\circ$
- 9) $sin^2 360^\circ + cos^2 360^\circ$

1

- 10) $sec^2 180^\circ 3 sin^2 360^\circ + 2 cos 180^\circ -1$
- 11) $5 \sin^2 90^\circ + 2 \cos^2 270^\circ 7 \tan 360^\circ$

12) **Concept check:** If $\cot \theta$ is undefined, then what is the value of $\tan \theta$?

13) Concept check: If the terminal side of an angle θ is in quadrant III, then what is the sign of each of the trigonometric function values of θ ?

 $\tan \theta$ and $\cot \theta$ are positive, all other trig functions are negative.

Suppose that the point (x, y) is in the indicated quadrant. Decide whether the given ratio is positive or negative.

- 14) II, $\frac{x}{r}$ negative 15) III, $\frac{y}{r}$ negative
- 16) IV, $\frac{y}{x}$ negative 17) IV, $\frac{x}{y}$
- negative

- 18) II, $\frac{y}{r}$ positive 19) III, $\frac{x}{r}$ negative
- 20) IV, $\frac{x}{r}$ positive 21) IV, $\frac{y}{r}$
- negative

Find the values of the six trigonometric functions for each angle in standard position having the given point on its terminal side. Rationalize denominators when applicable.

22) (-3,4)

23) (-4, -3)

24) (0, 2)

25) (-4,0)

 $\sin \theta = \frac{4}{5}$

 $\sin \theta = \frac{-3}{5}$

 $\sin \theta = 1$

 $\sin \theta = 0$

 $\cos \theta = \frac{-3}{5}$

 $\cos \theta = \frac{-4}{5}$

 $\cos \theta = 0$

 $\cos \theta = -1$

 $\tan \theta = \frac{4}{3}$

 $\tan \theta = \frac{3}{4}$

 $\tan \theta = undefined$

 $\tan \theta = 0$

 $\csc \theta = \frac{5}{4}$

 $\csc \theta = \frac{5}{2}$

 $\csc \theta = 1$

 $\csc \theta = undefined$

 $\sec \theta = \frac{5}{2}$

 $\sec \theta = \frac{5}{4}$

 $sec \theta = undefined$

 $\sec \theta = -1$

 $\cot \theta = \frac{-3}{4}$

 $\cot \theta = \frac{4}{3}$

 $\cot \theta = 0$

 $\cot \theta = undefined$

26) $(1,\sqrt{3})$

27) $(-2\sqrt{3}, -2)$ 28) (-2, 0)

29) (3, -4)

 $\sin \theta = \frac{\sqrt{3}}{2}$

 $\sin \theta = \frac{-1}{2}$

 $\sin \theta = 0$

 $\sin \theta = \frac{-4}{5}$

 $\cos \theta = \frac{1}{2}$

 $\cos \theta = \frac{-\sqrt{3}}{2}$

 $\cos \theta = -1$

 $\cos \theta = \frac{3}{5}$

 $\tan \theta = \sqrt{3}$

 $\tan \theta = \frac{\sqrt{3}}{2}$

 $\tan \theta = 0$

 $\tan \theta = \frac{-4}{3}$

 $\csc \theta = \frac{2\sqrt{3}}{3}$

 $\csc \theta = -2$

 $\csc \theta = undefined$

 $\csc \theta = \frac{-5}{4}$

 $\sec \theta = 2$

 $\sec \theta = \frac{-2\sqrt{3}}{3}$

 $\sec \theta = -1 \qquad \qquad \sec \theta = \frac{5}{2}$

 $\cot \theta = \frac{\sqrt{3}}{3}$

 $\cot \theta = \sqrt{3}$

 $\cot \theta = undefined \qquad \cot \theta = \frac{-3}{4}$

The angles 15° and 75° are complementary. With your calculator determine sin 15° and cos 75°. Make a conjecture about 30) the sines and cosines of complementary angles, and test your hypothesis with other pairs of complementary angles.

They are equal

31) The angles 25° and 65° are complementary. With your calculator determine tan 25° and cot 65°. Make a conjecture about the tangents and cotangents of complementary angles, and test your hypothesis with other pairs of complementary angles.

They are equal

With your calculator determine $\sin 10^{\circ}$ and $\sin (-10^{\circ})$. Make a conjuncture about the sines of an angle and its negative, 32) and test your hypothesis with other angles. Also, use a geometry argument with the definition of $\sin\theta$ to justify your hypothesis.