Unit 1.1 Notes Angles

Complementary angles add to 90°
If you have angle x and you want to find its complementary angle just take $90^{\circ}-x$

Supplementary angles add to 180°
If you have angle x and you want to find its supplementary angle just take $180^{\circ}-x$

Degree, Minutes, and Seconds

There are 360 degrees in a full circle. 15 degrees is shown as: 15°

There are 60 minutes in 1 degree. 15 minutes is shown as: 15^{\prime}

There are 60 seconds in 1 minute. 15 seconds is shown as: 15"

So, 23 degrees 13 minutes and 49 seconds is shown as: $23^{\circ} 13^{\prime} 49^{\prime \prime}$

The highest number for minutes and seconds should be 59 , since 60 minutes would make 1 degree and 60 seconds would make 1 minute.

Add $51^{\circ} 29^{\prime}+32^{\circ} 46^{\prime}$

Stack and add the minutes and degrees separately
$51^{\circ} 29^{\prime}$

$$
+32^{\circ} 46^{\prime}
$$

$83^{\circ} 75^{\prime}$
Since $75^{\prime}=60^{\prime}+15^{\prime}=1^{\circ}+15^{\prime}$, then
83°
$+1^{\circ} 15^{\prime}$

$$
84^{\circ} 15^{\prime}
$$

Converting between Decimal Degrees and Degrees, Minutes, and Seconds.
Convert $74^{\circ} 8^{\prime} 14 "$ to decimal degrees rounded to the nearest thousandth.
$74^{\circ} 8^{\prime} 14^{\prime \prime}=74^{\circ}+\frac{8^{\circ}}{60}+\frac{\frac{14^{\circ}}{60}}{60}$ or $74^{\circ}+\frac{8^{\circ}}{60}+\frac{14^{\circ}}{3600}=74.137^{\circ}$

Convert 34.817° to degrees, minutes, and seconds.

$$
\begin{aligned}
& 34.817^{\circ}=34^{\circ}+0.817^{\circ} \rightarrow 34^{\circ}+0.817\left(60^{\prime}\right) \rightarrow 34^{\circ}+49.02^{\prime} \\
& 34^{\circ}+49.02^{\prime}=34^{\circ}+49^{\prime}+0.02^{\prime} \rightarrow 34^{\circ}+49^{\prime}+0.02\left(60^{\prime \prime}\right) \rightarrow 34^{\circ}+49^{\prime}+1.2^{\prime \prime}
\end{aligned}
$$

This gives us $34^{\circ} 49^{\prime} 1.2^{\prime \prime}$, which would usually round to $34^{\circ} 49^{\prime} 1^{\prime \prime}$

Standard Position

An angle is in standard position if its vertex is at the origin and its initial side is along the positive x-axis.
The side along the positive x-axis is called the initial side.
The other side of the angle is call the terminal side.

Coterminal Angles

A complete rotation of a ray results in an angle measuring 360°. By continuing the rotation, angles of measure larger than 360° can be produced. Angles that have the same initial side and same terminal side, but different amounts of rotation are called coterminal angles.

In the diagram above angles $55^{\circ}, 415^{\circ}$, and -305° are all coterminal angles because they have the same initial side and same terminal side.

