Math 3

Name: _____

PRACTICE Test Unit 2 Radian Measures

Convert each degree measure into radians.

Convert each radian measure into degrees.

5)
$$-\frac{73\pi}{36}$$
 6) $-\frac{3\pi}{4}$

7)
$$\frac{5\pi}{3}$$
 8) $\frac{\pi}{6}$

Find the exact value of each trigonometric function.

9)
$$\csc \frac{\pi}{2}$$
 10) $\cos \frac{5\pi}{3}$

11)
$$\cot \frac{11\pi}{6}$$
 12) $\cos \frac{3\pi}{4}$

Find the length of each arc.

16)
$$r = 9 \text{ m}, \ \theta = \frac{13\pi}{12}$$

Find the area of each sector.

#22 Find the area of a sector with a central angle of $\frac{2\pi}{3}$ radians and a diameter of 6 units.

Answer = _____ (2 pt)

#23 A railroad track is laid along the arc of a circle of radius 1800 ft. The circular part of the track subtends a central angle of 40°. How long (in seconds) will it take a point on the front of a train traveling 30 mph to go around this portion of the track. (Hint: there are 5280 ft in 1 mile.)

Answer = _____ (2 pt)

#24 The shoulder joint can rotate at about 25 radians per sec. If a golfer's arm is straight and the distance from the shoulder to the club head is 5 ft, estimate the linear speed of the club head from shoulder rotation.

Answer = _____ (2 pt)

PRACTICE Test Unit 2 Radian Measures

Convert each degree measure into radians.

1)
$$-60^{\circ} -\frac{\pi}{3}$$

2) $-300^{\circ} -\frac{5\pi}{3}$
3) $345^{\circ} \frac{23\pi}{12}$
4) $120^{\circ} \frac{2\pi}{3}$

Convert each radian measure into degrees.

5)
$$-\frac{73\pi}{36}$$

 -365°

7) $\frac{5\pi}{3}$

 300°

6) $-\frac{3\pi}{4}$
 -135°

8) $\frac{\pi}{6}$
 30°

Find the exact value of each trigonometric function.

9)
$$\csc \frac{\pi}{2}$$

1
1) $\cot \frac{11\pi}{6}$
 $-\sqrt{3}$
10) $\cos \frac{5\pi}{3} \frac{1}{2}$
12) $\cos \frac{3\pi}{4} - \frac{\sqrt{2}}{2}$

Find the length of each arc.

15) $r = 11 \text{ cm}, \ \theta = \frac{\pi}{3} \frac{11\pi}{3} \text{ cm}$

16)
$$r = 9 \text{ m}, \ \theta = \frac{13\pi}{12} \ \frac{39\pi}{4} \text{ m}$$

Find the area of each sector.

#21 In your own words, what is a radian? (2 pt)

answers may vary

The angle made by an arc of radius length is 1 radian.

- #22 Find the area of a sector with a central angle of $\frac{2\pi}{3}$ radians and a diameter of 6 units.
- Answer = $\frac{\text{about 9.4 units}^2}{2 \text{ pt}}$ (2 pt)

#23 A railroad track is laid along the arc of a circle of radius 1800 ft. The circular part of the track subtends a central angle of 40°. How long (in seconds) will it take a point on the front of a train traveling 30 mph to go around this portion of the track. (Hint: there are 5280 ft in 1 mile.)

Answer = about 29 seconds (2 pt)

#24 The shoulder joint can rotate at about 25 radians per sec. If a golfer's arm is straight and the distance from the shoulder to the club head is 5 ft, estimate the linear speed of the club head from shoulder rotation.

 $Answer = 125 \text{ ft per second} \qquad (2 \text{ pt})$