\qquad
PRACTICE Test Unit 2 Radian Measures

Convert each degree measure into radians.

1) -60°
2) -300°
3) 345°
4) 120°

Convert each radian measure into degrees.
5) $-\frac{73 \pi}{36}$
6) $-\frac{3 \pi}{4}$
7) $\frac{5 \pi}{3}$
8) $\frac{\pi}{6}$

Find the exact value of each trigonometric function.
9) $\csc \frac{\pi}{2}$
10) $\cos \frac{5 \pi}{3}$
11) $\cot \frac{11 \pi}{6}$
12) $\cos \frac{3 \pi}{4}$

Find the length of each arc.

14)

15) $r=11 \mathrm{~cm}, \theta=\frac{\pi}{3}$
16) $r=9 \mathrm{~m}, \theta=\frac{13 \pi}{12}$

Find the area of each sector.
17)

18)

19) $r=11 \mathrm{~cm}, \theta=\frac{7 \pi}{4}$
20) $r=13 \mathrm{~cm}, \theta=\frac{\pi}{4}$
\#21 In your own words, what is a radian?

Find the area of a sector with a central angle of $\frac{2 \pi}{3}$ radians and a diameter of 6 units.

Answer = \qquad (2 pt)
\#23 A railroad track is laid along the arc of a circle of radius 1800 ft . The circular part of the track subtends a central angle of 40°. How long (in seconds) will it take a point on the front of a train traveling 30 mph to go around this portion of the track. (Hint: there are 5280 ft in $\mathbf{1}$ mile.)

Answer = \qquad (2 pt)
\#24 The shoulder joint can rotate at about 25 radians per sec. If a golfer's arm is straight and the distance from the shoulder to the club head is 5 ft , estimate the linear speed of the club head from shoulder rotation.

Answer = \qquad (2 pt)

PRACTICE Test Unit 2 Radian Measures

Convert each degree measure into radians.

1) $-60^{\circ}-\frac{\pi}{3}$
2) $-300^{\circ}-\frac{5 \pi}{3}$
3) $345^{\circ} \frac{23 \pi}{12}$
4) $120^{\circ} \frac{2 \pi}{3}$

Convert each radian measure into degrees.

5) $-\frac{73 \pi}{36}$
6) $-\frac{3 \pi}{4}$
-365°
-135°
7) $\frac{5 \pi}{3}$
8) $\frac{\pi}{6}$
300°
30°

Find the exact value of each trigonometric function.
9) $\csc \frac{\pi}{2}$
10) $\cos \frac{5 \pi}{3} \frac{1}{2}$
1
11) $\cot \frac{11 \pi}{6}$
12) $\cos \frac{3 \pi}{4}-\frac{\sqrt{2}}{2}$

$$
-\sqrt{3}
$$

Find the length of each arc.
13)

14)

15) $r=11 \mathrm{~cm}, \theta=\frac{\pi}{3} \frac{11 \pi}{3} \mathrm{~cm}$
16) $r=9 \mathrm{~m}, \theta=\frac{13 \pi}{12} \quad \frac{39 \pi}{4} \mathrm{~m}$

Find the area of each sector.
17)

18)

$48 \pi \mathrm{in}^{2}$
19) $r=11 \mathrm{~cm}, \theta=\frac{7 \pi}{4} \frac{847 \pi}{8} \mathrm{~cm}^{2}$
\#21 In your own words, what is a radian? (2 pt)
answers may vary
The angle made by an arc of radius length is $\mathbf{1}$ radian.
\#22 Find the area of a sector with a central angle of $\frac{2 \pi}{3}$ radians and a diameter of 6 units.

Answer $=\quad$ about 9.4 units $^{2} \quad(2 \mathbf{p t})$
\#23 A railroad track is laid along the arc of a circle of radius 1800 ft . The circular part of the track subtends a central angle of 40°. How long (in seconds) will it take a point on the front of a train traveling 30 mph to go around this portion of the track. (Hint: there are 5280 ft in 1 mile.)

Answer $=\quad$ about 29 seconds (2 pt)
\#24 The shoulder joint can rotate at about 25 radians per sec. If a golfer's arm is straight and the distance from the shoulder to the club head is 5 ft , estimate the linear speed of the club head from shoulder rotation.

Answer $=\quad 125 \mathrm{ft}$ per second $\quad(2 \mathrm{pt})$

