PRACTICE Quiz 7.1-7.2 Change Logarithmic Form and Inverse Logs

Rewrite each equation in logarithmic form.

1)
$$6^{10} = x$$

2)
$$225^{\frac{1}{2}} = 15$$

Rewrite each equation in exponential form.

3)
$$\log_x 198 = y$$

4)
$$\log_{216} 6 = \frac{1}{3}$$

Use a calculator to approximate each to the nearest thousandth.

Find the inverse of each function.

7)
$$y = -\log_x 3$$

8)
$$y = \log_5(x+4)$$

$$9) \ \ y = \log_4(3x)$$

10)
$$y = \log_{\frac{1}{5}} x + 3$$

PRACTICE Quiz 7.1-7.2 Change Logarithmic Form and Inverse Logs

Rewrite each equation in logarithmic form.

1)
$$6^{10} = x$$
 $\log_6 x = 10$

2)
$$225^{\frac{1}{2}} = 15$$

$$\log_{225} 15 = \frac{1}{2}$$

Rewrite each equation in exponential form.

3)
$$\log_x 198 = y$$

 $x^y = 198$

4)
$$\log_{216} 6 = \frac{1}{3}$$

$$216^{\frac{1}{3}} = 6$$

Use a calculator to approximate each to the nearest thousandth.

6)
$$\log_6 64$$

Find the inverse of each function.

$$7) y = -\log_x 3$$

$$y = 3^{-\frac{1}{x}}$$

8)
$$y = \log_5 (x+4)$$
$$y = 5^x - 4$$

9)
$$y = \log_4(3x)$$
$$y = \frac{4^x}{3}$$

10)
$$y = \log_{\frac{1}{5}} x + 3$$

$$y = \frac{1}{5^{x-3}}$$