Notes 4.1 Zero and negative exponents

$A^{0}=1$, exception is $0^{0}=$ undefined
$A^{-x}=\frac{1}{A^{x}}$ and $\frac{1}{A^{-x}}=A^{x}$

Notes 4.2 Multiplying powers with the same base

$A^{x} A^{y}=A^{x+y}$

Notes 4.3 More multiplication properties of exponents

$(A B)^{x}=A^{x} B^{x}$
$\left(\frac{A}{B}\right)^{x}=\frac{A^{x}}{B^{x}}$
$\left(A^{x}\right)^{y}=A^{x y}$

Notes 4.4 Division properties of exponents

$\frac{A^{x}}{A^{y}}=A^{x-y}$

Notes 4.5 Exponential functions

For a function to be exponential it must have a variable as the exponent.

Notes 4.6 Exponential Growth and Decay

In the form: $y=A \cdot B^{x} \mathrm{~A}$ is the initial amount and B is the growth factor.
$A=P\left(1+\frac{r}{n}\right)^{n t}$ this is the compound interest formula.
$A=$ future value of investment
$r=$ annual interest rate (must be a decimal!)
$t=$ number of years invested (this must be in years!) (if it is 5 months then it would be 5/12)
Words to describe n for compounding:
annually is $n=1$
monthly is $\mathrm{n}=12$
bi-annually is $n=2$
bi-monthly is $n=24$
quarterly is $n=4$
semi-annually is $n=2$

