Notes 4.1 Zero and negative exponents

 $A^0 = 1$, exception is $0^0 = undefined$

$$A^{-x} = \frac{1}{A^x}$$
 and $\frac{1}{A^{-x}} = A^x$

Notes 4.2 Multiplying powers with the same base

 $A^x A^y = A^{x+y}$

Notes 4.3 More multiplication properties of exponents

 $(AB)^x = A^x B^x$

$$\left(\frac{A}{B}\right)^x = \frac{A^x}{B^x}$$

$$(A^x)^y = A^{xy}$$

Notes 4.4 Division properties of exponents

$$\frac{A^x}{A^y} = A^{x-y}$$

Notes 4.5 Exponential functions

For a function to be exponential it must have a variable as the exponent.

Notes 4.6 Exponential Growth and Decay

In the form: $y = A \cdot B^x$ A is the **<u>initial amount</u>** and B is the **growth factor**.

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$
 this is the compound interest formula.

A= future value of investment	P = Principal investment or initial amount invested	
r = annual interest rate (must be a decimal!)	n = number of times compounded per year	
t = number of years invested (this must be in years!) (if it is 5 months then it would be $5/12$)		

Words to describe n for compounding:			
annually is n=1	bi-annually is n=2	quarterly is n=4	
monthly is n=12	bi-monthly is n=24	semi-annually is n=2	