Step 1 (put in y=mx+b form) 3x - 2y > -4-3x - 3x

 $\frac{-2y}{-2} > \frac{-3x}{-2} - \frac{4}{-2}$

(divided by negative flips inequality sign) $y < \frac{3}{2}x + 2$ (use y=mx+b) b = 2 (put first point on the y-axis at 2)

 $m = \frac{3}{2}$ (from the b point up 3 and right 2) (or from the b point down 3 and left 2)

< (tells us to draw line dashed)

y < (tells us to shade down)

Step 3

from step 2 shade in dark the overlapping shaded area.

Step 2

(put in y=mx+b form) $2y + 2 \ge -x$ -2 -2 $\frac{2y}{2} \ge \frac{-x}{2} - \frac{2}{2}$ $y \ge -\frac{1}{2}x - 1$ (use y=mx+b) b = -1 (put first point on the y-axis at -1) $m = -\frac{1}{2}$ (from the b point down 1 and right 2) (or from the b point up 1 and left 2)

- \geq (tells us to draw line solid)
- $y \ge$ (tells us to shade up)

Rules:

< or > draw dashed line $\le or \ge$ draw solid line

 $y < or y \le$ shade down $y > or y \ge$ shade up

Always put into slope-intercept form (y = mx + b)

Changing to slope-intercept form is usually easiest for graphing the lines.

Change to y = mx + b form to graph.

Solid or dashed line:

 $y < or y \le$ shade down

Go to point on line and y-axis Go down from that point That is the area to shade

 $y > or y \ge$ shade up

Go to point on line and y-axis Go up from that point That is the area to shade

Area to shade in dark:

The area where the shading of both inequalities would overlap is where you shade.

This is the answer area.

