Math 1
Name

- 2020 Kuta Software LLC. All rights reserved.

Chapter 1 TEST REVIEW
Period
Simplify each expression.

1) $-10+3(4 n-4)$
2) $-\frac{7}{3}\left(-\frac{5}{3} m+2\right)$

Solve each equation. Show all work.
3) $1-3 p-8=11$
4) $-(x-1)=7 x-3(-2 x-5)$

Solve each proportion. Show all work.
5) $\frac{3}{8}=\frac{m}{6}$
6) $\frac{r-3}{5}=\frac{r+7}{8}$

Solve each inequality. Graph its solution. Write the interval notation.
7) $2 p-2 p>0$
$\begin{array}{lllllllllllll} & & & & & & & & & & & & \\ 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$
8) $-3(3 n+3) \geq-2(-n-1)$

9) $-3 \leq a-2 \leq-2$
10) $-4 m+1<5$ or $-m+2 \leq-2$

Solve each equation. Show all work.
11) $|-2 n+2|=22$
12) $9|n-9|+7=97$

Solve each inequality. Graph the inequality. Write the interval notation.
13) $-2|m|<-4$

14) $4|2 b-4|-1<-9$

Chapter 1 TEST REVIEW

Period
Simplify each expression.

1) $-10+3(4 n-4)$
$-10+12 n-12$ $-22+12 n$

Distribute
Combine like terms

2) $-\frac{7}{3}\left(-\frac{5}{3} m+2\right)$

$$
\frac{35}{9} m-\frac{14}{3}
$$

Solve each equation. Show all work.

Solve each proportion. Show all work.
5) $\frac{3}{8}=\frac{m}{6}$
6) $\frac{r-3}{5}=\frac{r+7}{8}$
(6) $\left(\frac{3}{8}\right)=\left(\frac{m}{6}\right)(6)$ multiple 6 to both sides
$\frac{9}{4}=m$

$8(r-3)$	$=5(r+7)$	
$8 r-24$	$=5 r+35$	
$-5 r$	$-5 r$	distribute
	Subtract $5 r$ to both sides	

$$
\begin{array}{r}
3 r-24=35 \\
+24 \quad+24
\end{array}
$$

divide 3 to both sides	$\frac{3 r}{3}=\frac{59}{3} \quad r=\frac{59}{3}$

Solve each inequality. Graph its solution. Write the interval notation.
7) $2 p-2 p>0$

Combine like terms

This if FALSE, so "No solution"
8) $-3(3 n+3) \geq-2(-n-1)$
$-9 n-9 \geq 2 n+2$
$-2 n \quad-2 n$

distribute
Subtract $2 n$ to both sides

$-11 n-9 \geq 2$
$+9 \quad+9$
add 9 to both sides

$\frac{-11 n}{-11} \geq \frac{11}{-11}$	divide -11 to both sides
$n \leq-1$	$\begin{array}{l}\text { Rule: divide by negative, } \\ \text { flip inequality sign }\end{array}$

Graph:

Interval notation: $\quad(-\infty,-1]$
9) $-3 \leq a-2 \leq-2$

$$
\text { add } 2 \text { to all three areas }
$$

$$
+2 \quad+2 \quad+2
$$

$$
-1 \leq a \leq 0
$$

Graph:

Interval notation: $\quad[-1,0]$
10) $-4 m+1<5$
subtract 1 to both sides

$\frac{-4 m}{-4}<\frac{4}{-4}$	divide -4 to both sides
	Rule: divide by negative, flip inequality sign

or

$\frac{-m}{-1} \leq \frac{-4}{-1}$	divide -1 to both sides
$m \geq 4$	Rule: divide by negative, flip inequality sign

Graph:

Since one graph overlaps the second, then don't show the overlapped graph.
Interval notation: $\quad[-1, \infty)$
11)

$$
\begin{array}{lll}
\text { 11) } & |-2 n+2|=22 & \text { Write as two equations } \\
1^{\text {st }}: & -2 n+2=22 & \text { subtract } 2 \text { to both sides }
\end{array}
$$

$$
\frac{-2 n}{-2}=\frac{20}{-2} \quad \text { divide }-2 \text { to both sides }
$$

$$
n=-10
$$

$2^{\text {nd }}$

$$
-2 n+2=-22
$$

$$
\text { subtract } 2 \text { to both sides }
$$

$$
\frac{-2 n}{-2}=\frac{-24}{-2}
$$

$$
\text { divide }-2 \text { to both sides }
$$

$n=12$

```
12) }\quad9|n-9|+7=9
                                    subtract 2 to both sides
                                    -7 -7
9|n-9|}=\frac{90}{9
divide 9 to both sides
|n-9|=10
Write as two equations
1 's:}\quadn-9=1
        +9 +9
    add 9 to both sides
n=19
2nd}:\quadn-9=-1
    add 9 to both sides
13) \(\frac{-2|m|}{-2}<\frac{-4}{-2}\)
\(|m|>2\)
\begin{tabular}{|l|}
\hline divide -2 to both sides \\
\hline \begin{tabular}{l} 
Rule: divide by negative, \\
flip inequality sign
\end{tabular} \\
\hline
\end{tabular}
Write as two inequalities
\(+9+9\)
\(n=-1\)
add 9 to both sides
\(1^{\text {st }}: \quad m>2\)
\(2^{\text {nd }}: \quad m<-2\)
Rule: on \(2^{\text {nd }}\) inequality, flip the inequality sign and set equal to opposite number
Graph:
```



```
Interval notation: \(\quad(-\infty,-2) \cup(2, \infty)\)
```

14)

$4\|2 b-4\|-1$	-9
+1	+1

add 1 to both sides
$\frac{4|2 b-4|}{4}<\frac{-8}{4}$
$|2 b-4|<-2$
divide 4 to both sides

Rule: absolute value are never negative so, "No solution"

No solution

