Math 1		Name_
© 2020 Kuta Software LLC.	All rights re	served.
Chapter 1 TEST REVIEW		

Simplify each expression.

1)
$$-10 + 3(4n - 4)$$

2) $-\frac{7}{3}\left(-\frac{5}{3}m + 2\right)$

Solve each equation. Show all work.

3)
$$1 - 3p - 8 = 11$$

4) $-(x - 1) = 7x - 3(-2x - 5)$

Solve each proportion. Show all work.

5)
$$\frac{3}{8} = \frac{m}{6}$$
 6) $\frac{r-3}{5} = \frac{r+7}{8}$

Period____

Solve each inequality. Graph its solution. Write the interval notation.

Solve each equation. Show all work.

11)
$$|-2n+2| = 22$$

12) $9|n-9| + 7 = 97$

Solve each inequality. Graph the inequality. Write the interval notation.

Math 1 Name_____ © 2020 Kuta Software LLC. All rights reserved. Chapter 1 TEST REVIEW

Period

KEY

Simplify each expression.

1)
$$-10 + 3(4n - 4)$$

 $-10 + 12n - 12$
 $-22 + 12n$
Distribute
Distribute
2) $-\frac{7}{3}\left(-\frac{5}{3}m + 2\right)$
Distribute
 $\frac{35}{9}m - \frac{14}{3}$

Solve each equation. Show all work.

3)
$$1-3p-8=11$$

 $-7-3p=11$
 $+7$
 $-3p=\frac{18}{-3}$
 $p=-6$
Combine like terms
 $-\frac{3p}{-3}=\frac{18}{-3}$
 $p=-6$
Combine like terms
 $-x+1=7x+6x+15$
 $-x+1=13x+15$
 $+x$
 $+x$
 $-x+1=13x+15$
 $-x+1=13x+15$
 $-x+1=13x+15$
 $-x+1=13x+15$
 -15
 -15
 -15
 $-14=\frac{14x}{14}$
divide 14 to both sides
 $-1=x$

Solve each proportion. Show all work.

5)
$$\frac{3}{8} = \frac{m}{6}$$

(6) $\left(\frac{3}{8}\right) = \left(\frac{m}{6}\right)$ (6) multiple 6 to both sides
 $\frac{9}{4} = m$

(6) $\left(\frac{3}{8}\right) = \left(\frac{m}{6}\right)$ (6) multiple 6 to both sides
 $\frac{9}{4} = m$

(7) $\frac{8(r-3) = 5(r+7)}{8r-24 = 5r+35}$
 $-5r -5r$

(3) $r-24 = 35$
 $+24 + 24$

(4) $\frac{3r - 24}{3} = \frac{59}{3}$

(5) $\frac{3r - 24}{3} = \frac{59}{3}$

(7) $\frac{3r - 24}{3} = \frac{59}{3}$

Solve each inequality. Graph its solution. Write the interval notation.

7) 2p - 2p > 00 > 0

Combine like terms

This if FALSE, so "No solution"

8)
$$-3(3n+3) \ge -2(-n-1)$$

 $-9n-9 \ge 2n+2$
 $-2n$ $-2n$
Subtract 2n to both sides
 $-11n-9 \ge 2$
 $+9$ $+9$
 $add 9$ to both sides
 $-\frac{-11n}{-11} \ge \frac{11}{-11}$
 $n \le -1$
divide -11 to both sides
Rule: divide by negative,
flip inequality sign
Graph:
 -3 -2 -1 0 1 2 3 4 5 6 7

Interval notation: $(-\infty, -1]$

9)
$$-3 \le a - 2 \le -2$$

+2 +2 +2 add 2 to all three areas

$$-1 \le a \le 0$$

Graph: -3 -2 -1 0 1 2 3 4 5 6 7Interval notation: [-1,0]

[−1,∞)

Since one graph overlaps the second, then don't show the overlapped graph.

Interval notation:

-2 - 2

11)
$$|-2n+2| = 22$$

1st:

-2n + 2 = 22

 $\frac{-2n}{-2} = \frac{20}{-2}$

subtract 2 to both sides

$$n = -10$$

$$2^{nd}$$
: $-2n+2 = -22$
 $-2 - 2$

$$2n = -24$$

divide -2 to both sides

$$n = 12$$

14)
$$4|2b-4|-1<-9$$

 $+1$ add 1 to both sides $\frac{4|2b-4|}{4} < \frac{-8}{4}$ divide 4 to both sides $|2b-4| < -2$ Rule: absolute value are never negative so,
"No solution"

No solution