Solve the inequality

$3-2|a-3|>-5$
$-3 \quad-3 \quad$ To solve first you need to subtract 3 from both sides

For the next step most people's first instinct is to distribute the -2 into the absolute, but although absolute value is grouping symbols, you can never distribute into the absolute value bars.

So, the only other thing you can do is divide by -2 to both sides,
$\frac{-2|a-3|}{-2}>\frac{-8}{-2}$
This is where the one rule for inequalities is used:
"If you every miltiply or divide by a negative number, then flip the inequality sign"

Once the absolute value is isolated on one side always check for "no solution" and "all real solutions".
The alsolute value is not < or >a "negative number" so continue.
The absolute value is 4 units away from zero at " 4 " and " -4 "
So write your two inequalities:
Remember to flip the inequality with the negative.

Remove the absolute value bars:
$a-3<4$
$+3+3$
and

Answer!
$a<7$
and
$a>-1$

Graph the inequality

On a number line graph the answers:

The numbers used are 7 and -1 from the answers.

If the answer has \leq or \geq then use solid circles:
If the answer has $<$ or $>$ then use open circles:
So, use open circle to match your answer, put open circle on the 7 and -1

Next, put the arrows on the graph:
Make sure the variable is on the left, and treat the inequality sign as the arrow direction:
$a<7$
Go left
and
$a>-1$
and
go right

Since the arrows are going towards each other the connect the lines together

Graph done!

Write the inequality as an interval notation

The numbers used are 7 and -1 and every number in between.
If the answer has \leq or \geq then use brackets: [and]
If the answer has < or > then use paratheses: (and)
So, use paratheses to match your answer, put paratheses around the 7 and -1 and put the 7 and -1 in order as you see them on the number line.

Like so: $(7,-1)$
Done!

