Notes 10.1 Translations continued

A translation is a transformation that maps every two points P and Q in the plane to points P^{\prime} and Q^{\prime}, so that the following properties are true:

1. $P P^{\prime}=Q Q^{\prime}$
2. $\overline{P P^{\prime}} \| \overline{Q Q^{\prime}}$, or $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are collinear.

THEOREM

THEOREM 7.4 Translation Theorem
A translation is an isometry.

GOAL 2 TRANSLATIONS USING VECTORS

Another way to describe a translation is by using a vector. A vector is a quantity that has both direction and magnitude, or size, and is represented by an arrow drawn between two points.

The diagram shows a vector. The initial point, or starting point, of the vector is P and the terminal point , or ending point, is Q. The vector is named $\overrightarrow{P Q}$, which is read as "vector $P Q$." The horizontal component of $\overrightarrow{P Q}$ is 5 and the vertical component is 3 .
The component form of a vector combines
 the horizontal and vertical components. So, the component form of $\overrightarrow{P Q}$ is $\langle 5,3\rangle$.

EXAMPLE 3 Identifying Vector Components

In the diagram, name each vector and write its component form.
a.

b.

c.

SOLUTION

a. The vector is $\overrightarrow{J K}$. To move from the initial point J to the terminal point K, you move 3 units to the right and 4 units up. So, the component form is $\langle 3,4\rangle$.
b. The vector is $\overrightarrow{M N}=\langle 0,4\rangle$.
c. The vector is $\overrightarrow{T S}=\langle 3,-3\rangle$.

EXAMPLE 4 Translation Using Vectors

The component form of $\overrightarrow{G H}$ is $\langle 4,2\rangle$. Use $\overrightarrow{G H}$ to translate the triangle whose vertices are $A(3,-1), B(1,1)$, and $C(3,5)$.

Solution

First graph $\triangle A B C$. The component form of $\overrightarrow{G H}$ is $\langle 4,2\rangle$, so the image vertices should all be 4 units to the right and 2 units up from the preimage vertices. Label the image vertices as $A^{\prime}(7,1), B^{\prime}(5,3)$, and $C^{\prime}(7,7)$. Then, using a straightedge, draw $\triangle A^{\prime} B^{\prime} C^{\prime}$. Notice that the vectors drawn from preimage to image vertices are parallel.

